这篇文章给了我一个启发,我们可以自己用已知分布的密度函数进行组合,然后构建一个新的密度函数啦,然后用极大似然估计MLE进行估计。

代码和结果演示
代码:
  1. #取出MASS包这中的数据
  2. data(geyser,package="MASS")
  3. head(geyser)
  4. attach(geyser)
  5. par(bg='lemonchiffon')
  6. hist(waiting,freq=F,col="lightcoral")
  7. #freq=F要加上,否则就无法添加线了
  8. lines(density(waiting),lwd=2,col="cadetblue4")
  9. #根据图像,我们认为其在前后分别是两个正态分布函数的组合
  10. #定义 log‐likelihood 函数
  11. LL<-function(params,data){
  12. #参数"params"是一个向量,
  13. #依次包含了五个参数: p,mu1,sigma1,mu2,sigma2.
  14. #参数"data",是观测数据。
  15. t1<-dnorm(data,params[2],params[3])
  16. t2<-dnorm(data,params[4],params[5])
  17. #f是概率密度函数
  18. f<-params[1]*t1+(1-params[1])*t2
  19. #混合密度函数
  20. ll<-sum(log(f))
  21. #log‐likelihood 函数
  22. return(-ll)
  23. #nlminb()函数是最小化一个函数的值,
  24. #但我们是要最大化 log‐likeilhood 函数
  25. #所以需要在“ ll”前加个“ ‐”号。
  26. }
  27. #估计函数####optim####
  28. # debugonce(nlminb)
  29. geyser.res<-nlminb(c(0.5,50,10,80,10),LL,data=waiting,
  30. lower=c(0.0001,-Inf,0.0001,
  31. -Inf,0.0001),
  32. upper=c(0.9999,Inf,Inf,Inf,Inf))
  33. #初始值为 p=0.5,mu1=50,sigma1=10,mu2=80,sigma2=10
  34. #初始值也会被传递给LL
  35. #LL 是被最小化的函数。
  36. #data 是估计用的数据(传递给我们的LL)
  37. #lower 和 upper 分别指定参数的上界和下界。
  38. #查看拟合的参数
  39. geyser.res$par
  40. #拟合的效果
  41. #解释变量
  42. X<-seq(40,120,length=100)
  43. #读出估计的参数
  44. p<-geyser.res$par[1]
  45. mu1<-geyser.res$par[2]
  46. sig1<-geyser.res$par[3]
  47. mu2<-geyser.res$par[4]
  48. sig2<-geyser.res$par[5]
  49. #将估计的参数函数代入原密度函数。
  50. f<-p*dnorm(X,mu1,sig1)+(1-p)*dnorm(X,mu2,sig2)
  51. #作出数据的直方图
  52. hist(waiting,probability=T,col='lightpink3',
  53. ylab="Density",ylim=c(0,0.04),
  54. xlab="Eruption waiting times"
  55. )
  56. #画出拟合的曲线
  57. lines(X,f,col='lightskyblue3',lwd=2)
  58. detach(geyser)

调试的说明
nlminb函数:
nlminb(c(0.5,50,10,80,10),LL,data=waiting,
                   lower=c(0.0001,-Inf,0.0001,
                           -Inf,0.0001),
                   upper=c(0.9999,Inf,Inf,Inf,Inf))
  1. function (start, objective, gradient = NULL, hessian = NULL,
  2. ..., scale = 1, control = list(), lower = -Inf, upper = Inf)
  3. {
  4. par <- setNames(as.double(start), names(start))
  5. n <- length(par)
  6. iv <- integer(78 + 3 * n)
  7. v <- double(130 + (n * (n + 27))/2)
  8. .Call(C_port_ivset, 2, iv, v)
  9. if (length(control)) {
  10. nms <- names(control)
  11. if (!is.list(control) || is.null(nms))
  12. stop("'control' argument must be a named list")
  13. pos <- pmatch(nms, names(port_cpos))
  14. if (any(nap <- is.na(pos))) {
  15. warning(sprintf(ngettext(length(nap), "unrecognized control element named %s ignored",
  16. "unrecognized control elements named %s ignored"),
  17. paste(sQuote(nms[nap]), collapse = ", ")), domain = NA)
  18. pos <- pos[!nap]
  19. control <- control[!nap]
  20. }
  21. ivpars <- pos <= 4
  22. vpars <- !ivpars
  23. if (any(ivpars))
  24. iv[port_cpos[pos[ivpars]]] <- as.integer(unlist(control[ivpars]))
  25. if (any(vpars))
  26. v[port_cpos[pos[vpars]]] <- as.double(unlist(control[vpars]))
  27. }
  28. obj <- quote(objective(.par, ...))

  29. rho <- new.env(parent = environment())

  30. assign(".par", par, envir = rho)
  31. grad <- hess <- low <- upp <- NULL
  32. if (!is.null(gradient)) {
  33. grad <- quote(gradient(.par, ...))
  34. if (!is.null(hessian)) {
  35. if (is.logical(hessian))
  36. stop("logical 'hessian' argument not allowed. See documentation.")
  37. hess <- quote(hessian(.par, ...))
  38. }
  39. }
  40. if (any(lower != -Inf) || any(upper != Inf)) {
  41. low <- rep_len(as.double(lower), length(par))
  42. upp <- rep_len(as.double(upper), length(par))
  43. }
  44. else low <- upp <- numeric()
  45. .Call(C_port_nlminb, obj, grad, hess, rho, low, upp, d = rep_len(as.double(scale),
  46. length(par)), iv, v)
  47. iv1 <- iv[1L]
  48. list(par = get(".par", envir = rho), objective = v[10L],
  49. convergence = (if (iv1 %in% 3L:6L) 0L else 1L), iterations = iv[31L],
  50. evaluations = c(`function` = iv[6L], gradient = iv[30L]),
  51. message = if (19 <= iv1 && iv1 <= 43) {
  52. if (any(B <- iv1 == port_cpos)) sprintf("'control' component '%s' = %g, is out of range",
  53. names(port_cpos)[B], v[iv1]) else sprintf("V[IV[1]] = V[%d] = %g is out of range (see PORT docu.)",
  54. iv1, v[iv1])
  55. } else port_msg(iv1))
  56. }
par最先获得了初始值
obj <- quote(objective(.par, ...))
让obj表示一个名为objective,接受形参.par和...的函数,即我们传入的对数似然函数
rho <- new.env(parent = environment())
创建新环境
assign(".par", par, envir = rho)
将par赋给rho环境中的.par变量
.Call(C_port_nlminb, obj, grad, hess, 
        rho, low, upp, d = rep_len(as.double(scale), length(par)), iv, v)
C_port_nlminb在名为stats.dll的包里,我用reflector和VS都没能看到什么东西,唉,最关键的东西是缺失的。
此时rho包含了参数的初始值,而obj接受.par和多出来的data,即参数初始值和数据。
在nlminb函数的帮助文档里提到:
...
Further arguments to be supplied to objective.
即在这里是传递给对数似然函数的更多参数,这里是data,之所以LL的第一个参数不需要传入是因为我们在源码看到其是.par,也可以在帮助文档看到:
objective
Function to be minimized. Must return a scalar value. The first argument to objective is the vector of parameters to be optimized, whose initial values are supplied through start(start 参数). Further arguments (fixed during the course of the optimization) to objective may be specified as well (see ...(参数)).

---------------------------------------
参考:
原文档:

附件列表

补充资料——自己实现极大似然估计(最大似然估计)MLE的更多相关文章

  1. 最大似然估计(Maximum Likelihood,ML)

    先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likeliho ...

  2. 最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用

    最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道 ...

  3. 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法

    1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...

  4. 最大似然估计 (MLE) 最大后验概率(MAP)

    1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布 ...

  5. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

  6. 机器学习的MLE和MAP:最大似然估计和最大后验估计

    https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 频率学派 - Frequentist - Maximum Likelihoo ...

  7. 最大似然估计和最大后验概率MAP

    最大似然估计是一种奇妙的东西,我觉得发明这种估计的人特别才华.如果是我,觉得很难凭空想到这样做. 极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点.频率派认为,参数是客观存在的,只是未知而矣. ...

  8. 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码

    学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...

  9. 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

    目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...

随机推荐

  1. 资讯类产品-创业邦APP产品原型模板公开分享

    众所周知,知识付费和资讯是近年来两个受关注度极高的互联网产品方向.18年喜马拉雅“123狂欢节”,3天时间内容消费额4.35亿,足见知识付费内容市场的火爆.字节跳动凭借今日头条APP起家,逐渐跻身互联 ...

  2. 配置成功java11后安装eclipse失败

    前提是 1.java是成功配置的, 2.看清楚32bit,还是64bit,需要一致 THEN 方法一:去安装java11之前的版本,正确配置环境 方法二:java11中没有jre(不打紧).所以需要直 ...

  3. POJ 1159 Palindrome(最长公共子序列)

    Palindrome [题目链接]Palindrome [题目类型]最长公共子序列 &题解: 你做的操作只能是插入字符,但是你要使最后palindrome,插入了之后就相当于抵消了,所以就和在 ...

  4. 接口自动化测试持续集成--Soapui接口功能测试断言

    断言也就是判断实际结果与预期结果是否相等,如果相等测试通过,否则测试失败,自动化测试不管是UI,Services还有unit都需要做断言. 一.添加断言步骤的组件 二.设置断言 设置常用断言的三种方式 ...

  5. zookeeper注册与发现

    pom.xml添加如下引用: <dependency> <groupId>org.apache.zookeeper</groupId> <artifactId ...

  6. 论文阅读(XiangBai——【CVPR2017】Detecting Oriented Text in Natural Images by Linking Segments)

    XiangBai——[CVPR2017]Detecting Oriented Text in Natural Images by link Segments 目录 作者和相关链接 方法概括 方法细节 ...

  7. vue-cli教程

    转:https://jspang.com/post/vue-cli2.html#toc-5ca

  8. 求方差分析与两样本T检验 区别

    方差分析与两样本T检验. 1.首先可以看到方差分析(ANOVA)包含两样本T检验,把两样本T检验作为自己的特例.因为ANOVA可以比较多个总体的均值,当然包含两个总体作为特例.实际上,T的平方就是F统 ...

  9. WEB学习小笔记

    环境基于WIN10.IDEA最新版.JDK1.8.TOMCAT9 下面说的有错的地方希望指出,谢谢. STRUT2 1.在maven下的时候系统会系统创建一个叫做log4j的配置文件,但是到了这个版本 ...

  10. javascript ----字符串的使用

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...