这篇文章给了我一个启发,我们可以自己用已知分布的密度函数进行组合,然后构建一个新的密度函数啦,然后用极大似然估计MLE进行估计。

代码和结果演示
代码:
  1. #取出MASS包这中的数据
  2. data(geyser,package="MASS")
  3. head(geyser)
  4. attach(geyser)
  5. par(bg='lemonchiffon')
  6. hist(waiting,freq=F,col="lightcoral")
  7. #freq=F要加上,否则就无法添加线了
  8. lines(density(waiting),lwd=2,col="cadetblue4")
  9. #根据图像,我们认为其在前后分别是两个正态分布函数的组合
  10. #定义 log‐likelihood 函数
  11. LL<-function(params,data){
  12. #参数"params"是一个向量,
  13. #依次包含了五个参数: p,mu1,sigma1,mu2,sigma2.
  14. #参数"data",是观测数据。
  15. t1<-dnorm(data,params[2],params[3])
  16. t2<-dnorm(data,params[4],params[5])
  17. #f是概率密度函数
  18. f<-params[1]*t1+(1-params[1])*t2
  19. #混合密度函数
  20. ll<-sum(log(f))
  21. #log‐likelihood 函数
  22. return(-ll)
  23. #nlminb()函数是最小化一个函数的值,
  24. #但我们是要最大化 log‐likeilhood 函数
  25. #所以需要在“ ll”前加个“ ‐”号。
  26. }
  27. #估计函数####optim####
  28. # debugonce(nlminb)
  29. geyser.res<-nlminb(c(0.5,50,10,80,10),LL,data=waiting,
  30. lower=c(0.0001,-Inf,0.0001,
  31. -Inf,0.0001),
  32. upper=c(0.9999,Inf,Inf,Inf,Inf))
  33. #初始值为 p=0.5,mu1=50,sigma1=10,mu2=80,sigma2=10
  34. #初始值也会被传递给LL
  35. #LL 是被最小化的函数。
  36. #data 是估计用的数据(传递给我们的LL)
  37. #lower 和 upper 分别指定参数的上界和下界。
  38. #查看拟合的参数
  39. geyser.res$par
  40. #拟合的效果
  41. #解释变量
  42. X<-seq(40,120,length=100)
  43. #读出估计的参数
  44. p<-geyser.res$par[1]
  45. mu1<-geyser.res$par[2]
  46. sig1<-geyser.res$par[3]
  47. mu2<-geyser.res$par[4]
  48. sig2<-geyser.res$par[5]
  49. #将估计的参数函数代入原密度函数。
  50. f<-p*dnorm(X,mu1,sig1)+(1-p)*dnorm(X,mu2,sig2)
  51. #作出数据的直方图
  52. hist(waiting,probability=T,col='lightpink3',
  53. ylab="Density",ylim=c(0,0.04),
  54. xlab="Eruption waiting times"
  55. )
  56. #画出拟合的曲线
  57. lines(X,f,col='lightskyblue3',lwd=2)
  58. detach(geyser)

调试的说明
nlminb函数:
nlminb(c(0.5,50,10,80,10),LL,data=waiting,
                   lower=c(0.0001,-Inf,0.0001,
                           -Inf,0.0001),
                   upper=c(0.9999,Inf,Inf,Inf,Inf))
  1. function (start, objective, gradient = NULL, hessian = NULL,
  2. ..., scale = 1, control = list(), lower = -Inf, upper = Inf)
  3. {
  4. par <- setNames(as.double(start), names(start))
  5. n <- length(par)
  6. iv <- integer(78 + 3 * n)
  7. v <- double(130 + (n * (n + 27))/2)
  8. .Call(C_port_ivset, 2, iv, v)
  9. if (length(control)) {
  10. nms <- names(control)
  11. if (!is.list(control) || is.null(nms))
  12. stop("'control' argument must be a named list")
  13. pos <- pmatch(nms, names(port_cpos))
  14. if (any(nap <- is.na(pos))) {
  15. warning(sprintf(ngettext(length(nap), "unrecognized control element named %s ignored",
  16. "unrecognized control elements named %s ignored"),
  17. paste(sQuote(nms[nap]), collapse = ", ")), domain = NA)
  18. pos <- pos[!nap]
  19. control <- control[!nap]
  20. }
  21. ivpars <- pos <= 4
  22. vpars <- !ivpars
  23. if (any(ivpars))
  24. iv[port_cpos[pos[ivpars]]] <- as.integer(unlist(control[ivpars]))
  25. if (any(vpars))
  26. v[port_cpos[pos[vpars]]] <- as.double(unlist(control[vpars]))
  27. }
  28. obj <- quote(objective(.par, ...))

  29. rho <- new.env(parent = environment())

  30. assign(".par", par, envir = rho)
  31. grad <- hess <- low <- upp <- NULL
  32. if (!is.null(gradient)) {
  33. grad <- quote(gradient(.par, ...))
  34. if (!is.null(hessian)) {
  35. if (is.logical(hessian))
  36. stop("logical 'hessian' argument not allowed. See documentation.")
  37. hess <- quote(hessian(.par, ...))
  38. }
  39. }
  40. if (any(lower != -Inf) || any(upper != Inf)) {
  41. low <- rep_len(as.double(lower), length(par))
  42. upp <- rep_len(as.double(upper), length(par))
  43. }
  44. else low <- upp <- numeric()
  45. .Call(C_port_nlminb, obj, grad, hess, rho, low, upp, d = rep_len(as.double(scale),
  46. length(par)), iv, v)
  47. iv1 <- iv[1L]
  48. list(par = get(".par", envir = rho), objective = v[10L],
  49. convergence = (if (iv1 %in% 3L:6L) 0L else 1L), iterations = iv[31L],
  50. evaluations = c(`function` = iv[6L], gradient = iv[30L]),
  51. message = if (19 <= iv1 && iv1 <= 43) {
  52. if (any(B <- iv1 == port_cpos)) sprintf("'control' component '%s' = %g, is out of range",
  53. names(port_cpos)[B], v[iv1]) else sprintf("V[IV[1]] = V[%d] = %g is out of range (see PORT docu.)",
  54. iv1, v[iv1])
  55. } else port_msg(iv1))
  56. }
par最先获得了初始值
obj <- quote(objective(.par, ...))
让obj表示一个名为objective,接受形参.par和...的函数,即我们传入的对数似然函数
rho <- new.env(parent = environment())
创建新环境
assign(".par", par, envir = rho)
将par赋给rho环境中的.par变量
.Call(C_port_nlminb, obj, grad, hess, 
        rho, low, upp, d = rep_len(as.double(scale), length(par)), iv, v)
C_port_nlminb在名为stats.dll的包里,我用reflector和VS都没能看到什么东西,唉,最关键的东西是缺失的。
此时rho包含了参数的初始值,而obj接受.par和多出来的data,即参数初始值和数据。
在nlminb函数的帮助文档里提到:
...
Further arguments to be supplied to objective.
即在这里是传递给对数似然函数的更多参数,这里是data,之所以LL的第一个参数不需要传入是因为我们在源码看到其是.par,也可以在帮助文档看到:
objective
Function to be minimized. Must return a scalar value. The first argument to objective is the vector of parameters to be optimized, whose initial values are supplied through start(start 参数). Further arguments (fixed during the course of the optimization) to objective may be specified as well (see ...(参数)).

---------------------------------------
参考:
原文档:

附件列表

补充资料——自己实现极大似然估计(最大似然估计)MLE的更多相关文章

  1. 最大似然估计(Maximum Likelihood,ML)

    先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likeliho ...

  2. 最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用

    最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道 ...

  3. 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法

    1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...

  4. 最大似然估计 (MLE) 最大后验概率(MAP)

    1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布 ...

  5. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

  6. 机器学习的MLE和MAP:最大似然估计和最大后验估计

    https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 频率学派 - Frequentist - Maximum Likelihoo ...

  7. 最大似然估计和最大后验概率MAP

    最大似然估计是一种奇妙的东西,我觉得发明这种估计的人特别才华.如果是我,觉得很难凭空想到这样做. 极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点.频率派认为,参数是客观存在的,只是未知而矣. ...

  8. 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码

    学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...

  9. 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

    目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...

随机推荐

  1. 面试 Java 高级后端开发,要准备哪些知识点?

    其实公司肯花时间让你去面试,前提条件一定是通过你的简历,一定发现了你和公司的匹配点,也就是说,一定是有录用意向的. 在技术面试的时间段里(最长1个小时),你如果能展现你的优势那是最好的,但如果你做不到 ...

  2. Kafka笔记6(数据传递的可靠性)

    Kafka保证分区消息的顺序,“先入先出” 只有当消息被写入分区的所有副本时,才被认为已提交的 只要有一个副本是活跃的,已提交的消息就不会丢失 消费者只能读取已经提交的消息 如果一个或多个副本在同步/ ...

  3. springMVC--XML解析

    一 springMVC 入口 web.xml; DispatcherServlet二 初始化过程 1.寻找init(); 查看DispatcherServlet时候时,继承自servlet,肯定有初始 ...

  4. GET和POST两种基本请求方法(转自博主--在途中#)

    GET和POST两种基本请求方法的区别 GET和POST是HTTP请求的两种基本方法,要说它们的区别,接触过WEB开发的人都能说出一二. 最直观的区别就是GET把参数包含在URL中,POST通过req ...

  5. django框架配置mysql数据库

    django配置mysql数据库: 1.首先更改django项目文件中的settings.py的数据库配置 DATABASES = { 'default': { 'ENGINE': 'django.d ...

  6. 判断文件的编码 python

    import chardet import string path1= r'C:\Users\25456\Desktop' path = path1 + r'\深度学习.txt' with open( ...

  7. Winfon 页签切换及窗体控件自适应

    由于公司的业务调整,最近不仅开发bs,还有不熟悉的cs,人手也不足,项目还多,对于cs来说,算是小白,虽然是一个人,也是硬着头皮写,拖拽控件,自定义控件.一个项目下来,对cs有了很深的认识,这里好好感 ...

  8. 将BUG管理工具(禅道)部署到服务器(测试服务器、云服务器)

      禅道是一个开源的项目管理软件,用来记录软件项目的开发过程.bug跟踪以及任务分配,它是基于PHP语言开发的.   https://www.zentao.net/download/80111.htm ...

  9. Spring Boot 2.x中的management.security.enabled=false无效问题

    look: https://blog.csdn.net/qq_27385301/article/details/82899303

  10. 【转】git示意图