tarjan算法(强连通分量 + 强连通分量缩点 + 桥(割边) + 割点 + LCA)
这篇文章是从网络上总结各方经验 以及 自己找的一些例题的算法模板,主要是用于自己的日后的模板总结以后防失忆常看看的, 写的也是自己能看懂即可。
tarjan算法的功能很强大, 可以用来求解强连通分量,缩点,桥,割点,LCA等,日后写到相应的模板题我就会放上来。
1.强连通分量(分量中是任意两点间都可以互相到达)
按照深度优先遍历的方式遍历这张图。
遍历当前节点所出的所有边。在遍历过程中:
( 1 ) 如果当前边的终点还没有访问过,访问。
回溯回来之后比较当前节点的low值和终点的low值。将较小的变为当前节点的low值。(因为遍历到终点时有可能触发了2)
( 2 ) 如果已经访问过,那我们一定走到了一个之前已经走过的点(终点的时间戳一定比当前的小)
则比较当前节点的low值和终点的dfn值。将较小的变为当前节点的low值
在回溯过程中,对于任意节点u用其出边的终点v的low值来更新节点u的low值。因为节点v能够回溯到的已经在栈中的节点,节点u也一定能够回溯到。因为存在从u到v的直接路径,所以v能够到的节点u也一定能够到。
当一个节点的dfn值和low值相等时,这个节点是一个强联通分量的“根”。压栈,输出。
例题:http://acm.hdu.edu.cn/showproblem.php?pid=1269
#include<stdio.h>
#include<stack>
#include<algorithm>
#include<string.h>
using namespace std; int n, m, cnt, deep, kinds_color;
int head[10000 + 10];
int dfn[10000 + 10], low[10000 + 10], vis[10000 + 10];
stack<int>S; struct Edge
{
int to, next;
}edge[100000 + 10]; void add(int u, int v)
{
edge[++ cnt].to = v;
//edge[cnt].w = w;
edge[cnt].next = head[u];
head[u] = cnt;
} void tarjan(int now)
{
dfn[now] = low[now] = ++deep;
S.push(now);
vis[now] = 1;
for(int i = head[now]; i != 0; i = edge[i].next)
{
int to = edge[i].to;
if(!dfn[to])
{
tarjan(to);
low[now] = min(low[now], low[to]);
}
else if(vis[to])
low[now] = min(low[now], dfn[to]);
}
if(dfn[now] == low[now])
{
kinds_color ++;
while(1)
{
int temp = S.top();
S.pop();
if(temp == now)
break;
}
}
} int main()
{
int a, b;
while(scanf("%d%d", &n, &m)!=EOF)
{
if(n == 0 && m == 0)
break;
cnt = deep = kinds_color = 0;
memset(head, 0, sizeof(head));
memset(dfn, 0, sizeof(dfn));
memset(vis, 0, sizeof(vis));
memset(low, 0, sizeof(low));
for(int i = 1; i <= m; i ++)
{
scanf("%d%d", &a, &b);
add(a, b);
}
for(int i = 1; i <= n; i ++)
if(!dfn[i])
tarjan(i);
if(kinds_color == 1)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
2.强连通分量缩点(多了步化简图的操作)
主要步骤跟上面求分量是一模一样的,区别在于需要在栈出的过程中,记录每个点所处的哪个分量
if(dfn[now] == low[now])
{
k_color ++; //分块
while(1)
{
int temp = S.top();
S.pop();
color[temp] = k_color; //记录每个点所属的分量块
vis[temp] = 0;
if(temp == now)
break;
}
}
for(int i = 1; i <= n; i ++)//遍历原图
{
for(int j = head[i]; j != -1; j = edge[j].next)
{
int to = edge[j].to;
int x = color[i], y = color[to];//x, y为强连通分量的编号
if(x != y)//如果起点终点属于不同的连通分量,就可以建为新图的边了,点为连通分量编号
{
add1(x, y);
// in[y] ++;这是拓扑排序的入度 无视掉
}
}
}
3.tarjan求割点
例题:https://www.luogu.org/problemnew/show/P3388
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define mem(a, b) memset(a, b, sizeof(a))
using namespace std; int n, m, ans;
int cnt, head[20010];
int dfn[20010], low[20010], deep;
int flag[20010]; struct Edge
{
int to, next;
}edge[100010 * 2]; void add(int a, int b)
{
edge[++ cnt].to = b;
edge[cnt].next = head[a];
head[a] = cnt;
} void tarjan(int now, int root) //求割点是不需要栈结构的
{
dfn[now] = low[now] = ++deep;
int child = 0;//根节点的特判
for(int i = head[now]; i != -1; i = edge[i].next)
{
int to = edge[i].to;
if(!dfn[to])
{
tarjan(to, root);
low[now] = min(low[now], low[to]);
if(low[to] >= dfn[now] && now != root)//表示该节点绕不回上面 ,那么上面的点是割点,因为去割掉之后下面的点就与上面的点分离了
{
flag[now] = 1;
}
if(now == root)//求根节点的子树数量
child ++;
}
low[now] = min(low[now], dfn[to]);//注意是dfn
}
if(child >= 2 && now == root) //如果根节点的子树数量大于等于2 ,将根节点去掉之后两颗子树就分离了
{
flag[now] = 1;
}
} int main()
{
scanf("%d%d", &n, &m);
cnt = deep = ans = 0;
mem(head, -1);
mem(dfn, 0);
mem(low, 0);
mem(flag, 0);
for(int i = 1; i <= m; i ++)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
add(b, a);
}
for(int i = 1; i <= n; i ++)
if(!dfn[i])
tarjan(i, i);
for(int i = 1; i <= n; i ++)
if(flag[i])
ans ++;
printf("%d\n", ans);
for(int i = 1; i <= n; i ++)
if(flag[i])
printf("%d ", i);
return 0;
}
4.求无向图的割边/桥
割边:在一个无向图中,去掉一条边(u, v),可以使图的连通分量增多的边, 就是割边,也称做桥
原理:利用tarjan算法, 对于一条边的起点u,终点v,如果满足条件 low[v] > dfn[u], 那么(u, v)就是一条割边, 因为这意味着不存在其他的边使得v可以回到u, 那么割掉就使图分离了.
需要注意的是跟割点不同, 没有等于号, 否则说明存在其他边回到起点, 那么就不是割边。
还有一点与割点不同, tarjan(int now, int pre),这里第二个变量记录的不是遍历起点的根节点, 而是记录now的父亲节点pre, 这样的话可以通过if(to != pre)保证不往回指,因为这是个无向图, 前向星会存回边.
例题:https://www.luogu.org/problemnew/show/P1656
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define mem(a, b) memset(a, b, sizeof(a))
using namespace std; int n, m, sum;
int head[200], cnt;//链式前向星数组
int dfn[200], low[200], deep;//tarjan数组 struct Edge
{
int from, to, next;
}edge[5000 * 2]; void add(int a, int b)
{
edge[++ cnt].to = b;
edge[cnt].from = a;
edge[cnt].next = head[a];
head[a] = cnt;
} struct ANS
{
int from, to;
}ans[5000 * 2]; bool cmp(ANS a, ANS b)
{
if(a.from != b.from)
return a.from < b.from;
else
return a.to < b.to;
} void tarjan(int now, int pre)
{
dfn[now] = low[now] = ++ deep;
for(int i = head[now]; i != -1; i = edge[i].next)
{
int to = edge[i].to;
if(!dfn[to])
{
tarjan(to, now);//pre指向now
low[now] = min(low[now], low[to]);
if(low[to] > dfn[now])
{
ans[++ sum].from = edge[i].from;
ans[sum].to = to;
}
}
else if(to != pre)
low[now] = min(low[now], dfn[to]);
}
} int main()
{
scanf("%d%d", &n, &m);
cnt = deep = sum = 0;
mem(head, -1), mem(dfn, 0), mem(low, 0);
for(int i = 1; i <= m; i ++)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
add(b, a);
}
for(int i = 1; i <= n; i ++)
if(!dfn[i])
tarjan(i, -1);
sort(ans + 1, ans + 1 + sum, cmp);
for(int i = 1; i <= sum; i ++)
printf("%d %d\n", ans[i].from, ans[i].to);
}
tarjan算法(强连通分量 + 强连通分量缩点 + 桥(割边) + 割点 + LCA)的更多相关文章
- Tarjan算法求有向图强连通分量并缩点
// Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...
- 『Tarjan算法 有向图的强连通分量』
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...
- 【原创】tarjan算法初步(强连通子图缩点)
[原创]tarjan算法初步(强连通子图缩点) tarjan算法的思路不是一般的绕!!(不过既然是求强连通子图这样的回路也就可以稍微原谅了..) 但是研究tarjan之前总得知道强连通分量是什么吧.. ...
- Tarjan算法求出强连通分量(包含若干个节点)
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...
- tarjan算法(求强连通子块,缩点)
tarjan算法求图中的强连通子图的个数. #include<iostream> #include<stack> #include<queue> #include& ...
- Tarjan 算法求强联通分量
转载自:http://blog.csdn.net/xinghongduo/article/details/6195337 还是没懂Tarjan算法的原理.但是感觉.讲的很有道理. 说到以Tarjan命 ...
- Tarjan算法 (强联通分量 割点 割边)
变量解释: low 指当前节点在同一强连通分量(或环)能回溯到的dfn最小的节点 dfn 指当前节点是第几个被搜到的节点(时间戳) sta 栈 vis 是否在栈中 ans 指强连通分量的数量 top ...
- 强连通分量的Tarjan算法
资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...
- Tarjan算法初探 (1):Tarjan如何求有向图的强连通分量
在此大概讲一下初学Tarjan算法的领悟( QwQ) Tarjan算法 是图论的非常经典的算法 可以用来寻找有向图中的强连通分量 与此同时也可以通过寻找图中的强连通分量来进行缩点 首先给出强连通分量的 ...
随机推荐
- nginx+iis使用
一.nginx的介绍 nginx是由俄罗斯人开发的一款高性能的http和反向代理服务器,也可以用来作为邮件代理.相比较于其他的服务器,具有占用内存少,稳定性高等优势 Nginx相关地址 源码:http ...
- mac svn无法保存密码,JetBrains IDE(WebStrom、IntelliJ IDEA) 反复提示输入密码
一.vim ~/.subversion/config用vim修改以下四个地方store-passwords = yesstore-plaintext-passwords = yesstore-ssl- ...
- postgresql :: FATAL: could not write init file
出现此错误,原因是磁盘空间被用尽.需要清理磁盘空间即可.
- python第10天(上)
multiprocessing包是Python中的多进程管理包.与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程.该进程可以运行在Py ...
- ionic2中使用极光IM的WebSDK实现即时聊天
本文主要介绍如何在ionic项目中集成极光IM的WebSDK,详细文档可参考官方介绍. 一.准备 1. 注册激光账号,进入开发者服务页面创建应用. 2. 创建应用后须完成对应平台的推送设置,进行应用或 ...
- Codeforces 513D2 Constrained Tree
Constrained Tree 没写出来好菜啊啊. 首先根据输入我们能算出某些节点的左儿子的范围, 右儿子的范围(此时并不准确) 然后我们在划分u这个节点的时候我们从左右开始用树状数组check每一 ...
- 服务器资源监控插件(jmeter)
零.引言 我们对被测应用进行性能测试时,除了关注吞吐量.响应时间等应用自身的表现外,对应用运行所涉及的服务器资源的使用情况,也是非常重要的方面,通过 实时监控,可以准确的把握不同测试场景下服务器资源消 ...
- RPC远程调用——Dubbo
1.安装Zookeeper a.下载Zookeeper后解压 b.进入根目录下的conf文件夹,将zoo_sample.cfg改成bak文件,并复制一个修改为zoo.cfg,修改相关配置 # The ...
- 关于python3.6上传文件时报错:HTTPSConnectionPool(host='***.org', port=443): Max retries exceeded with url: /post (Caused by SSLError(SSLError(1, '[SSL: CERTIFICATE_VERIFY_FAIL解决办法
第一个报错: 最近在练习post请求中上传文件时遇到了一个奇葩事情,两台电脑上写了一模一样的代码,一个运行正常,另一个一片红. 最后了解了一下原因以及解决办法.先记录下关键代码: files = {& ...
- 面试题总结(PS:只是我遇到的那些面试题,并不是经典面试题)
一.类和结构的区别,分别有什么应用.(参考:https://blog.csdn.net/yikeshu19900128/article/details/40400479) 1)类是引用类型,数据存放在 ...