BZOJ 5093: [Lydsy1711月赛]图的价值
第二类斯特林数模版题
需要一些组合数的小$ trick$
upd:这里更新了本题巧妙的$ O(k)$做法,虽然常数很大就是了
传送门:here
题意:求所有$ n$个节点的无重边自环图的价值和,定义一张图的价值为每个点度数的$ k$次方和,点有标号
$ Solution$
显然每个节点的贡献是独立的
枚举每个节点的度数,和这个点不联通的边可连可不连
$ ans=n*2^{\frac{(n-1)(n-2)}{2}}\ \ \sum\limits_{i=0}^{n-1}i^kC_{n-1}^i$
我们实际要求解的东西就是$ f(n,m)=\sum\limits_{i=0}^ni^mC_n^i$
把$i^m$用斯特林数展开得
$f(n,m)=\sum\limits_{i=0}^n\sum\limits_{j=0}^mC_i^jS(m,j)j!C_n^i$
把$j$移动到前面得
$f(n,m)=\sum\limits_{j=0}^mS(m,j)j!\sum\limits_{i=0}^nC_i^jC_n^i$
考虑后面这个$\sum\limits_{i=0}^nC_i^jC_n^i$是什么
本质相当于在$n$个物品中选出集合$A$,再在集合$A$中选取$j$个物品
也就是在$n$个物品中选取$j$个物品,其他$n-j$个物品可在集合$A$中也可不在
因此$\sum\limits_{i=0}^nC_i^jC_n^i=C_n^j2^{n-j}$
$f(n,m)=\sum\limits_{j=0}^mS(m,j)j!C_n^j2^{n-j}$
$NTT$筛出斯特林数直接计算即可
复杂度$O(k \ log \ k)$
$my \ code$
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define p 998244353
#define file(x)freopen(x".in","r",stdin);freopen(x".out","w",stdout)
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z,cnt;
int a[],b[],R[],lim;
ll ksm(ll x,ll y){
if(!y)return ;ll ew=;
while(y>){
if(y&)y--,ew=x*ew%p;
y>>=,x=x*x%p;
}return x*ew%p;
}
int inv[],S[];
struct poly{
int n,m,lim;
void init(int k){
//a[i]=(-1)^i / i! b[i] = i^k/i!
n=k;
a[]=;b[]=;
for(rt i=;i<=k;i++){
a[i]=-1ll*a[i-]*inv[i]%p;
b[i]=ksm(i,k)*a[i]%p;
if(i&)b[i]=-b[i];
}
lim=;while(lim<=n+n)lim<<=;
for(rt i=;i<lim;i++)R[i]=(R[i>>]>>)|(i&?(lim>>):);
}
void NTT(int *A,int fla){
for(rt i=;i<lim;i++)if(i<R[i])swap(A[i],A[R[i]]);
for(rt i=;i<lim;i<<=){
ll w=ksm(,p//i);
for(rt j=;j<lim;j+=i<<){
ll K=;
for(rt k=;k<i;k++,K=K*w%p){
ll x=A[j+k],y=K*A[i+j+k];
A[j+k]=(x+y)%p;A[i+j+k]=(x-y)%p;
}
}
}
if(fla==-){
reverse(A+,A+lim);
for(rt i=;i<=n;i++)S[i]=1ll*A[i]*ksm(lim,p-)%p;
} }
void main(int k){
init(k);
NTT(a,);NTT(b,);
for(rt i=;i<lim;i++)a[i]=1ll*a[i]*b[i]%p;
NTT(a,-);
}
}NTT;
int main(){
n=read()-;k=read();
inv[]=inv[]=;
for(rt i=;i<=k+;i++)inv[i]=1ll*inv[p%i]*(p-p/i)%p; NTT.main(k);
ll jc=,C=,ans=,sum=ksm(,n-j);
for(rt j=;j<=k;j++){
(ans+=S[j]*jc%p*C%p*sum)%=p;
jc=jc*(j+)%p;C=C*(n-j)%p*inv[j+]%p;
sum=sum*inv[]%p;
}
cout<<(ans*(n+)%p*ksm(,(ll)n*(n-)/)%p+p)%p;
return ;
}
BZOJ 5093: [Lydsy1711月赛]图的价值的更多相关文章
- bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 245 Solved: 128[Submit][Status][D ...
- BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...
- bzoj 5093 [Lydsy1711月赛]图的价值——第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 不要见到组合数就拆! 枚举每个点的度数,则答案为 \( n*\sum\limits_{ ...
- BZOJ 5093[Lydsy1711月赛]图的价值 线性做法
博主曾更过一篇复杂度为$O( k· \log k)$的多项式做法在这里 惊闻本题有$ O(k)$的神仙做法,说起神仙我就想起了于是就去学习了一波 幂与第二类斯特林数 推导看这里 $$ x^k=\sum ...
- BZOJ.5093.[Lydsy1711月赛]图的价值(NTT 斯特林数)
题目链接 对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:\[\sum_{i=0}^{n-1}i^kC_{n-1}^i2^{\frac{(n-2)(n-1)}{2}}\] 每个点是一样的 ...
- 【bzoj5093】 [Lydsy1711月赛]图的价值 组合数+斯特林数+NTT
Description "简单无向图"是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向 ...
- 【bzoj5093】[Lydsy1711月赛]图的价值(NTT+第二类斯特林数)
题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{ ...
- bzoj5093:[Lydsy1711月赛]图的价值
题目 首先考虑到这是一张有标号的图,每一个点的地位是相等的,因此我们只需要求出一个点的价值和乘上\(n\)就好了 考虑一个点有多少种情况下度数为\(i\) 显然我们可以让除了这个点的剩下的\(n-1\ ...
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
随机推荐
- hbase 迁库移库步骤
1 将数据导出 hbase org.apache.hadoop.hbase.mapreduce.Export t_zyzx_grzyfwtjxxb /hbase/data_backup/2018103 ...
- solr 7.7 搭建和搜索
最近做了个solr搜索的demo, 用的是solr7.7,之前网上好多文章搭建solr都是5.5+tomcat.. 自己摆弄了下,发现solr7.7和5.5 的部分文件夹有些改动,没有深究原理也就没有 ...
- 前端——jQuery
初识jQuery 什么是jQuery? jQuery就是JavaScript和Query,是辅助JavaScript开发的库,应用广泛,形成了行业标准.它对DOM操作做了很好的封装,我们可以用jQue ...
- 前端——JavaScript
何谓JavaScript?它与Java有什么关系? JavaScript与HTML.CSS组合使用应用于前端开发,JavaScript是一门独立的语言,浏览器内置了JS的解释器.它除了和Java名字长 ...
- Raft与MongoDB复制集协议比较
在一文搞懂raft算法一文中,从raft论文出发,详细介绍了raft的工作流程以及对特殊情况的处理.但算法.协议这种偏抽象的东西,仅仅看论文还是比较难以掌握的,需要看看在工业界的具体实现.本文关注Mo ...
- SpringBoot整合RabbitMQ-消息可靠性投递
本系列是学习SpringBoot整合RabbitMQ的练手,包含服务安装,RabbitMQ整合SpringBoot2.x,消息可靠性投递实现等三篇博客. 学习路径:https://www.imooc. ...
- Java语法----Java中equals和==的区别
[正文] 平时在学Android和Java语言的时候,总是碰到“equals”和“==”这两个字符,老感觉差不多:其实还是有一些区别的,今天干脆把它们彻底弄清楚. 一.java当中的数据类型和“==” ...
- iview inoput type=textarea 禁止拉伸
设置 :maxRows.minRows相同即可 <Input v-model="formValidate.remark" type="textarea" ...
- DOTween的Sequence图例说明
- 3 数据分析之Numpy模块(2)
数组函数 通用元素级数组函数通用函数(即ufunc)是一种对ndarray中的数据执行元素级的运算.我们可以将其看做是简单的函数(接收一个或多个参数,返回一个或者多个返回值). 常用一元ufunc: ...