思路


二叉搜索树的插入

TreeNode InsertRec(rootNode, key) =

    if rootNode == NULL, return new Node(key)

    if key >= rootNode.data, rootNode.rightChild = InsertRec(rootNode.rightChild, key)

    if Key < rootNode.data, rootNode.leftChild = InsertRec(rootNode.leftChild, key)

Context is: currentNode的reference 和要插入的key.

把key插入一个以rootNode为根的子树中去

二叉搜索树的删除

TreeNode DeleteRec(rootNode, key) =

    if rootNode == NULL, return rootNode

    if key >= rootNode.data, rootNode.rightChild = DeleteRec(rootNode.rightChild, key)

    if Key < rootNode.data, rootNode.leftChild = DeleteRec(rootNode.leftChild, key)

Context is: currentNode的reference 和要删除的key.

把key从一个以rootNode为根的子树中删去

在base case里,

  1. 如果是叶子节点返回空即可,
  2. 如果是单子节点,如果左子为空就返回右子。如果右子为空,就返回左子。
  3. 如果被删节点有两个孩子,则组要借助util找到中序遍历的后继节点, take 其值,然后再递归删除successor节点。

实现


        /// <summary>
/// insert record to BST recursively
/// </summary>
/// <param name="root">current root node</param>
/// <param name="key">the value of the element to be inserted</param>
public TreeNode<T> InsertRec(TreeNode<T> rootNode, T key)
{
if (rootNode == null)
{
rootNode = new TreeNode<T>();
rootNode.data = key;
return rootNode;
} if (key.CompareTo(rootNode.data) < )
{
rootNode.leftChild = InsertRec(rootNode.leftChild, key);
}
else
{
rootNode.rightChild = InsertRec(rootNode.rightChild, key);
} return rootNode;
} public void DeleteKey(T key)
{
this.root = DeleteRec(root, key);
} public void InsertKey(T key)
{
this.root = InsertRec(root, key);
} /// <summary>
/// Delete record from BST recursively
/// </summary>
/// <param name="rootNode">root node</param>
/// <param name="Key">value of the element</param>
/// <returns></returns>
public TreeNode<T> DeleteRec(TreeNode<T> node, T key)
{
if (node == null)
{
return null;
} if (key.CompareTo(node.data) < )
{
node.leftChild = DeleteRec(node.leftChild, key);
}
else if (key.CompareTo(node.data) > )
{
node.rightChild = DeleteRec(node.rightChild, key);
}
else // find the node, node is the one to be deleted
{
if (node.leftChild == null)
{
return node.rightChild;
}
else if (node.rightChild == null)
{
return node.leftChild;
}
else
{
// need to handle the root?
T value = GetMinValue(node);
node.data = value;
node.rightChild = DeleteRec(node.rightChild, value);
}
} return node;
} private T GetMinValue(TreeNode<T> node)
{
if (node == null)
{
throw new Exception("node is null.");
} if (node.rightChild != null)
{
TreeNode<T> temp = node.rightChild;
while (temp.leftChild != null)
{
temp = temp.leftChild;
} return temp.data;
}
else
{
throw new Exception("successor node is not found");
}
}

二叉搜索树(BST)的插入和删除递归实现的更多相关文章

  1. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历   二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...

  2. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...

  3. C++版 - 剑指offer 面试题24:二叉搜索树BST的后序遍历序列(的判断) 题解

    剑指offer 面试题24:二叉搜索树的后序遍历序列(的判断) 题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true.否则返回false.假设输入的数组的任意两个 ...

  4. 萌新笔记之二叉搜索树(BST)

    前言,以前搞过线段树,二叉树觉得也就那样= =.然后数据结构的课也没怎么听过,然后下周期中考... 本来以为今天英语考完可以好好搞ACM了,然后这个数据结构期中考感觉会丢人,还是好好学习一波. 二叉搜 ...

  5. 给定一个二叉搜索树(BST),找到树中第 K 小的节点

    问题:给定一个二叉搜索树(BST),找到树中第 K 小的节点. 出题人:阿里巴巴出题专家:文景/阿里云 CDN 资深技术专家. 考察点: 1. 基础数据结构的理解和编码能力 2.  递归使用 参考答案 ...

  6. 二叉搜索树-php实现 插入删除查找等操作

    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...

  7. 二叉搜索树 (BST) 的创建以及遍历

    二叉搜索树(Binary Search Tree) : 属于二叉树,其中每个节点都含有一个可以比较的键(如需要可以在键上关联值), 且每个节点的键都大于其左子树中的任意节点而小于右子树的任意节点的键. ...

  8. 二叉搜索树(BST)学习笔记

    BST调了一天,最后遍历参数错了,没药救了-- 本文所有代码均使用数组+结构体,不使用指针! 前言--BFS是啥 BST 二叉搜索树是基于二叉树的一种树,一种特殊的二叉树. 二叉搜索树要么是一颗空树, ...

  9. 二叉搜索树(BST)

    (第一段日常扯蛋,大家不要看)这几天就要回家了,osgearth暂时也不想弄了,毕竟不是几天就能弄出来的,所以打算过完年回来再弄.这几天闲着也是闲着,就掏出了之前买的算法导论看了看,把二叉搜索树实现了 ...

  10. 数据结构---二叉搜索树BST实现

    1. 二叉查找树 二叉查找树(Binary Search Tree),也称为二叉搜索树.有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一 ...

随机推荐

  1. zzw原创_ipv6下环境配置防火墙及FTP处理一例

    缘由:公司这段时间要将原IPV4地址切换到IPV6,在环境配置的过程中,碰到一坑,平时不太注意的问题,在IPV6下却放大了 实现目标:在IPV6下,机器A可以FTP到机器B,可以传输.下载文件 A机器 ...

  2. ElasticSearch踩坑记录

    一.分词错误 [2018-02-06 14:28:30:098] --- [INFO] --- [CjhArticleSimilarityTask.java:66] --- [[SimilarityC ...

  3. 【剑指Offer学习】【所有面试题汇总】

    剑指Offer学习 剑指Offer这本书已经学习完了,从中也学习到了不少的东西,现在做一个总的目录,供自已和大家一起参考,学如逆水行舟,不进则退.只有不断地学习才能跟上时候,跟得上技术的潮流! 所有代 ...

  4. Linux上文件恢复工具

    文件恢复工具extundelete官网:http://extundelete.sourceforge.net/ 使用方法,在页面里找到download,下载源码安装包:extundelete-0.2. ...

  5. one list to muti list

    List<Integer> intList = Lists.newArrayList(1, 2, 3, 4, 5, 6, 7, 8); List<List<Integer> ...

  6. laravel5.5首次使用php artisan migrate注意问题:

    1.在app/Providers/AppServiceProvider.php中设置字符串默认长度:(不进行这一步,执行php artisan migrate会报错,同时创建的表会有所缺失) use ...

  7. C#工作总结(一):Fleck的WebSocket使用

    一.引子(Foreword) 最近公司里面要做窗体和网页交互的功能.网上找了一下资料,这里做一个简单的扩充和整理,部分内容可能是摘自其他博客,这里会注明出处和原文地址供大家和自己日后查阅. 二.基础知 ...

  8. _net之美 记录笔记

    第一章: Valpoint vPoint1=new Valpoint(); Console.WriteLine(vPoint1.x); 1.=号左边ValPoint vPoint1,在线程上创建一个V ...

  9. [树组BIT]训练两题重新理解ver.

    树状数组重(jiao)新(wo)理(zuo)解(ren) POJ-2352 加加加都给我加 输入是一行一行按照x从小到大给出的,所以对于每个点,要考虑的只是x比它小的点的个数.即记录各个x的情况,并且 ...

  10. linux 常见报错

    yum install 包名        出现安装包重复,同一个安装包出现多版本 使用 rpm -qa |grep 包名 如果出现包名,则说明已存在该包(已被安装),要安装新版本的,可以卸载已装的y ...