Heterogeneous Memory Enhanced Multimodal Attention Model for Video Question Answering

2019-04-25 21:43:11

Paperhttps://arxiv.org/pdf/1904.04357.pdf

Codehttps://github.com/fanchenyou/HME-VideoQA

1. Background and Motivation: 

用 Memory Network 做视觉问题回答并不是特别新鲜,因为 CVPR-2018 已经有很多工作,都是用这种外部记忆网络来进行知识的读取,从而更好的辅助 VQA。但是本文做的是另外一种 task,video question answer,相对来说,视频的肯定要更难一些。如何很好的根据问题,到视频中去定位相关的视频帧,从而更好的完成问题回答,是一个需要关注的问题之一。

现有的方法都尝试对视频或者问题进行 attend 处理,以得到更好的结果:

1. Jang et al. 对视频特征的空间和时间维度都进行加权处理(spato-temporal attention mechansim on both spatial and temporal dimension of video features);他们也提出用 VGG 和 C3D 来提取 appearance 和 motion feature 来更好的表达视频帧;但是他们采用前期融合的方法,然后输入到 video encoder 中,这种方式得到的效果,并不是最优的;

2. Gao et al. 提出用更先进的 co-attention mechanism 来替换掉 Jang 的前期融合的方法;但是这种方法并没有同速进行 appearance 和 motion feature 检测到的 attention;与此同时,这种方法也丢失了可以从表观和运动特征中得到的 attention;

作者认为:现有方法未能正确的识别 attention,是因为他们分开进行了特征的融合 (feature integration) 和注意力学习 (attention learning) 的步骤;为了解决这一问题,作者提出一种新的多种记忆(heterogeneous memory)来同时完成融合 appearance and motion features 以及 learning spatio-temporal attention

另外,如果 question 有非常复杂的语义信息,那么 VideoQA 就会变得异常复杂,从而需要多个步骤的推理。现有的方法都是简单的用 Memory Network 来处理这种情况,但是作者认为他们的方法太多简单,用 LSTM 或者 GRU 得到的 single feature vector 缺乏捕获问题中复杂语义的能力,如图 1 所示。所以,就需要设计一种新的模型来理解问题中复杂的语义信息。为了解决这一问题,作者提出一种新的网络结构,尝试将 question encoder 和 question memory 来互相增强question encoder 学习问题的有意义表达,然后重新设计 question memory 来理解复杂的语义,然后通过存储和更新全局内容来强调检索的物体。

此外,作者也设计了一种多模态融合层,通过对齐相关视觉内容和关键问题单词,来同时对 visual 和 question hints 进行加权处理。在逐渐优化联合 attention 之后,再将其进行加权融合,然后进行 multi-step reasoning,以从复杂的语义中进行正确答案的推理。

2. The Proposed Method: 

2.1 Video and Text Representation: 

对于 video,作者用 Resnet, VGG 和 C3D 模型来提取 appearance and motion feature, $f^a, f^m$. 然后用两支 LSTM 模型分别对 motion and appearance features 进行处理,最终放到 memory network 中进行特征融合;

对于 question,先用 Glove 300-D 得到 embedding,然后用 LSTM 对这些向量进行处理。

2.2 Heterogeneous Video Memory

与常规的 external memory network 不同,作者新设计的网络处理多个输入,包括编码的 motion feature,appearance feature;用多个 write heads 来决定内容的写入,如图 3 所示。其中的 memory slots M = [m1, m2, ... , ms] 以及 三个 hidden states $h^m, h^a$ and $h^v$。前两个 hidden state $h^m$ 和 $h^a$ 用来表示 motion 和 appearance contents,将会写入到记忆中,$h^v$ 用于存贮和输出 global context-aware feature,该特征是融合了 motion 和 appearance information 的。

 

2.3 External Question Memory

该问题记忆的目标是存贮 sequential text information,学习不同单词之间的相关性,并且尝试从全局的角度来理解问题。

2.4 Multi-modal Fusion and Reasoning :

==

论文笔记:Heterogeneous Memory Enhanced Multimodal Attention Model for Video Question Answering的更多相关文章

  1. Multimodal —— 看图说话(Image Caption)任务的论文笔记(二)引入attention机制

    在上一篇博客中介绍的论文"Show and tell"所提出的NIC模型采用的是最"简单"的encoder-decoder框架,模型上没有什么新花样,使用CNN ...

  2. 论文笔记之:Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grained Recognition

    Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grain ...

  3. 【论文笔记】CBAM: Convolutional Block Attention Module

    CBAM: Convolutional Block Attention Module 2018-09-14 21:52:42 Paper:http://openaccess.thecvf.com/co ...

  4. SfMLearner论文笔记——Unsupervised Learning of Depth and Ego-Motion from Video

    1. Abstract 提出了一种无监督单目深度估计和相机运动估计的框架 利用视觉合成作为监督信息,使用端到端的方式学习 网络分为两部分(严格意义上是三个) 单目深度估计 多视图姿态估计 解释性网络( ...

  5. 【NLP】Attention Model(注意力模型)学习总结

    最近一直在研究深度语义匹配算法,搭建了个模型,跑起来效果并不是很理想,在分析原因的过程中,发现注意力模型在解决这个问题上还是很有帮助的,所以花了两天研究了一下. 此文大部分参考深度学习中的注意力机制( ...

  6. Attention Model(注意力模型)思想初探

    1. Attention model简介 0x1:AM是什么 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但 ...

  7. (zhuan) 自然语言处理中的Attention Model:是什么及为什么

    自然语言处理中的Attention Model:是什么及为什么 2017-07-13 张俊林 待字闺中 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model( ...

  8. [转]自然语言处理中的Attention Model:是什么及为什么

    自然语言处理中的Attention Model:是什么及为什么 https://blog.csdn.net/malefactor/article/details/50550211 /* 版权声明:可以 ...

  9. 自然语言处理中的Attention Model:是什么及为什么

    /* 版权声明:能够随意转载.转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有 ...

随机推荐

  1. json和pickle模块

    import pickleimport json data = {'k1': 123, 'k2': 'Hello'}print(type(data))# p_str = pickle.dumps(da ...

  2. 批量将PowerDesigner中表字段由小写变成大写

    通过以下VB脚本即可批量修改,在Tools=>Execute Commands下的Edit/Run Scripts,或者通过Ctrl+Shift+X运行以下脚本即可: '************ ...

  3. Java面试题和解答(二)

    1.字符流和字节流的区别,使用场景是什么,相关类有哪些 http://blog.csdn.net/zj8692286/article/details/126507312.线程安全的概念,实现线程安全的 ...

  4. jenkins 判断某个job是否正在构建

    其实很简单,访问jenkins job的xml api或者 json api,里面有两个key叫"lastBuild"和"lastCompletedBuild" ...

  5. Google Colab Free GPU Tutorial【转载】

    转自:https://medium.com/deep-learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d 1.Google Cola ...

  6. 【QT】Pycharm add QT Desinger

    1. https://www.cnblogs.com/dalanjing/p/6978373.html -m PyQt5.uic.pyuic  $FileName$ -o $FileNameWitho ...

  7. POJ 1390 Blocks(区间DP)

    Blocks [题目链接]Blocks [题目类型]区间DP &题意: 给定n个不同颜色的盒子,连续的相同颜色的k个盒子可以拿走,权值为k*k,求把所有盒子拿完的最大权值 &题解: 这 ...

  8. MQ消息队列配置

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  9. SpringMVC常见面试题总结

    1.什么是Spring MVC ?简单介绍下你对springMVC的理解? Spring MVC是一个基于MVC架构的用来简化web应用程序开发的应用开发框架,它是Spring的一个模块,无需中间整合 ...

  10. CentOS 7 Squid代理服务器反向代理

    Squid反向代理 将不同的URL请求分发到后台不同的Web服务器上,通过squid反向代理,可以加速网站的访问速度,同时互联网用户只能看到反向代理服务器的地址,加强网站的访问安全 Squid反向代理 ...