常写的SQL可能主要以实现查询出结果为主,但如果数据量一大,就会突出SQL查询语句优化的性能独特之处.一般的数据库设计都会建索引查询,这样较全盘扫描查询的确快了不少.下面总结下SQL查询语句的几个优化效率的地方,经验有限,难免有不足.

1、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引

2、避免在索引列上使用NOT在 where 子句中对字段进行 null 值判断,在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响。当Oracle遇到NOT,他就会停止使用索引转而执行全表扫描。如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

3、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描

4、应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
     select id from t where num=10 or num=20
     可以这样查询:
     select id from t where num=10
     union all
     select id from t where num=20

5、in 和 not in 也要慎用,否则会导致全表扫描,如:
     select id from t where num in(1,2,3)
     对于连续的数值,能用 between 就不要用 in 了:
     select id from t where num between 1 and 3

6、下面的查询也将导致全表扫描:
     select id from t where name like '%abc%'
     若要提高效率,可以考虑全文检索

7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
     select id from t where num=@num

可以改为强制查询使用索引:
     select id from t with(index(索引名)) where num=@num

8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
     select id from t where num/2=100
     应改为:
     select id from t where num=100*2

9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
     select id from t where substring(name,1,3)='abc'           // oracle总有的是substr函数。
     select id from t where datediff(day,createdate,'2005-11-30')=0      //查过了确实没有datediff函数。
     应改为:
     select id from t where name like 'abc%'
     select id from t where createdate>='2005-11-30' and createdate<'2005-12-1' // 
     oracle 中时间应该把char 转换成 date 如: createdate >= to_date('2005-11-30','yyyy-mm-dd')

10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引

11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12、很多时候用用EXISTS替代IN、用NOT EXISTS替代NOT IN一个好的选择:
      select num from a where num in(select num from b)
      用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

13、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

14、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

15、应尽可能的避免更新 聚集索引(clustered index)数据列,因为 聚集索引(clustered index)数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新聚集索引(clustered index)数据列,那么需要考虑是否应将该索引建为 聚集索引(clustered index)。

16、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

17、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

18、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

19、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

20、用EXISTS替换DISTINCT:
      当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT。一般可以考虑用EXIST替换, EXISTS 使查询更为迅速,因为            RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果。例子:
      (低效): SELECT DISTINCT DEPT_NO,DEPT_NAME FROM DEPT D , EMP E WHERE D.DEPT_NO = E.DEPT_NO

(高效): SELECT DEPT_NO,DEPT_NAME FROM DEPT D WHERE EXISTS ( SELECT ‘X' FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO)

21、避免在索引列上使用IS NULL和IS NOT NULL,   避免在索引中使用任何可以为空的列,Oracle将无法使用该索引。

低效: (索引失效)
SELECT … FROM DEPARTMENT WHERE DEPT_CODE IS NOT NULL;

高效:(索引有效) 
SELECT … FROM DEPARTMENT WHERE DEPT_CODE >=0;

SQL大数据查询优化的更多相关文章

  1. SQL大数据操作统计

    SQL大数据操作统计 1:select count(*) from table的区别SELECT object_name(id) as TableName,indid,rows,rowcnt FROM ...

  2. SQL 大数据查询如何进行优化?

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而 ...

  3. sql大数据量查询的优化技巧

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  4. mysql大数据查询优化

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  5. SQL大数据查询分页存储过程

    最后一页分页一卡死,整个网站的性能都会非常明显的下降,不知道为啥,微软有这个BUG一直没处理好.希望SQL2012里不要有这个问题就好了. 参考代码如下: -- =================== ...

  6. Oracle 大数据查询优化方法

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  7. Oracle大数据查询优化

    1.对于像状态之类的列,不是很多的,就可以加位图索引,对于唯一的列,就加唯一索引,其余的创建普通索引. 2.尽量不要使用select * 这样的查询,指定需要查询的列. 3.使用hits  selec ...

  8. sql大数据多条件查询索引优化

    此优化的前提可以称之为最近流行的头条人物“许三多”,总数据多,查询条件多,返回列多 优化前分页查询内部select列为需要的全部列,优化后内部select只返回ID主键,外部查询关联原数据表,然后查出 ...

  9. SQL命令语句进行大数据查询如何进行优化

    SQL 大数据查询如何进行优化? 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索 2.应尽量避免在 where 子句中对字段进行 null 值 ...

随机推荐

  1. 输入,输出与Mad Libs游戏

    name1=input('请输入一个名字') name2=input('请输入一个名字') car=input('请输入一种车子') print('饥饿的{}看到{}穿着三级甲骑着{}下山'.form ...

  2. 存储库之MongoDB、mysql

    本篇导航: 简介 MongoDB基础知识 安装 基本数据类型 CRUD操作 其它 存储库之mysql   一.简介 MongoDB是一款强大.灵活.且易于扩展的通用型数据库1.易用性 MongoDB是 ...

  3. YARN调试过程中的常见问题

    执行操作: hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.0.jar wordcount  /user/today/i ...

  4. IPV6配置

    云友“学渣王 ”在帖子里提到需要为阿里云ECS配置IP6地址,根据网上的一些信息,写此例.  如果要求是FQDN地址,请登录到您的域名控制面板,设置一条AAAA记录到新设置的IPv6隧道地址.  在阿 ...

  5. DocX Xceed.Words.NET操作Word,插入特殊符号

    x 传送门,我们走... DocX的Github传送门 介绍一 介绍二 写入特殊符号 开始... 自己做一个工具,要导出Word的,当时刚开始想使用Xceed.Words.NET.dll第三方插件进行 ...

  6. arcengine导出复本

    参考: https://gis.stackexchange.com/questions/172315/creating-checkout-replica-in-arcobjects-from-arcs ...

  7. es6 中的 symbol

    symbol 的引入是为了解决对象中的属性名冲突的问题 使用symbol() 函数生成的变量值不与任何的变量值相等,  所有用改变量的值做属性名是不会冲突的 symbol 可以转化为字符串, 可以转化 ...

  8. highcharts-3d.js实现饼状图

    嘛,首先,废话一下,这个插件挺好用的.我是因为做亮灯率demo所以接触了它. 首先引用外部文件,jQuery.js,highcharts.js,highcharts-3d.js,好的,这就搞定了第一步 ...

  9. Elasticsearch学习笔记(八)Elasticsearch的乐观锁并发控制

    一.基于_version的乐观锁并发控制                 语法:PUT /test_index/test_type/id?version=xxx             更新时带上数据 ...

  10. PowerBI功能发布时间线

    DAX/PowerBI系列 - PowerBI功能发布时间线 PowerBI从GA/上线以来,每月发布的功能收集起来做成了一个报表:(耐心等待PowerBI 出来,噔噔噔噔~~~) 上图显示: 1)D ...