Xgboost_sklearn代码Demo
Demo:
显示特征的重要程度:图形化展示:
from numpy import loadtxt
from xgboost import XGBClassifier
from xgboost import plot_importance
from matplotlib import pyplot
# load data
dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")
# split data into X and y
X = dataset[:,0:8]
y = dataset[:,8]
# fit model no training data
model = XGBClassifier()
model.fit(X, y)
# plot feature importance
plot_importance(model)
pyplot.show()
对学习率进行交叉验证与网格搜索,调参:
from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold
# load data
dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")
# split data into X and y
X = dataset[:,0:8]
Y = dataset[:,8]
# grid search
model = XGBClassifier()
learning_rate = [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3]
param_grid = dict(learning_rate=learning_rate)
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=7)
grid_search = GridSearchCV(model, param_grid, scoring="neg_log_loss", n_jobs=-1, cv=kfold)
grid_result = grid_search.fit(X, Y)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
params = grid_result.cv_results_['params']
for mean, param in zip(means, params):
print("%f with: %r" % (mean, param))
Xgboost主要参数:
xgb1 = XGBClassifier(
learning_rate =0.1,
n_estimators=1000,
max_depth=5,
min_child_weight=1,
gamma=0,
subsample=0.8,
colsample_bytree=0.8,
objective= 'binary:logistic',
nthread=4,
scale_pos_weight=1,
seed=27)
from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# load data
dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")
# split data into X and y
X = dataset[:,0:8]
Y = dataset[:,8]
# split data into train and test sets
seed = 7
test_size = 0.33
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)
# fit model no training data
model = XGBClassifier()
eval_set = [(X_test, y_test)]
model.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="logloss", eval_set=eval_set, verbose=True)
# make predictions for test data
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
# evaluate predictions
accuracy = accuracy_score(y_test, predictions)
print("Accuracy: %.2f%%" % (accuracy * 100.0))
限制迭代次数,当损失不再明显下降的时候,终止迭代:
from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# load data
dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")
# split data into X and y
X = dataset[:,0:8]
Y = dataset[:,8]
# split data into train and test sets
seed = 7
test_size = 0.33
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)
# fit model no training data
model = XGBClassifier()
eval_set = [(X_test, y_test)]
model.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="logloss", eval_set=eval_set, verbose=True)
# make predictions for test data
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
# evaluate predictions
accuracy = accuracy_score(y_test, predictions)
print("Accuracy: %.2f%%" % (accuracy * 100.0))
Xgboost_sklearn代码Demo的更多相关文章
- 嵌入式 hi3518x平台h264+g711a封装mp4代码demo
先看代码吧,有代码有真相,具体代码的demo(下载demo的朋友请勿在网上上传我的demo,谢谢)下载连接为: http://download.csdn.net/detail/skdkjxy/8071 ...
- 用Portable.BouncyCastle来进行加解密的代码demo
前言 这里对之前对接的公司中的代码demo做一个总结,原本为清一色的java,哈哈.这里都转成C#.用到的库是Portable.BouncyCastle.官网.之前也是准备用.net core 内置的 ...
- python 网络通讯 服务器端代码demo,能够同时处理多个客户端的连接请求
这是一个python网络通讯服务器端的代码demo,能够同时处理多个客户端的连接请求. from socket import * import threading from datetime impo ...
- ThinkPHP6 上传图片代码demo
本文展示了ThinkPHP6 上传图片代码demo, 代码亲测可用. HTML部分代码 <tr> <th class="font-size-sm" style=& ...
- Javascript类继承-机制-代码Demo【原创】
最近看到<Javascript设计模式>,对js模拟的”继承方式“有了更深一步的了解,虽然之前也总是用到prototype.new ,但只是知其然不知所以然,现在将类继承的方法整理如下,暂 ...
- jdk8十大特性并代码demo(转)
一.十大特性 1.Lambda表达式 2.Stream函数式操作流元素集合 3.接口新增:默认方法与静态方法 4.方法引用,与Lambda表达式联合使用 5.引入重复注解 6.类型注解 7.最新的Da ...
- 机器学习:eclipse中调用weka的Classifier分类器代码Demo
weka中实现了很多机器学习算法,不管实验室研究或者公司研发,都会或多或少的要使用weka,我的理解是weka是在本地的SparkML,SparkML是分布式的大数据处理机器学习算法,数据量不是很大的 ...
- 微信支付接口--超详细带注释代码--Demo
如果本文对你有用,请爱心点个赞,提高排名,帮助更多的人.谢谢大家!❤ 如果解决不了,可以在文末进群交流. 如果对你有帮助的话麻烦点个[推荐]~最好还可以follow一下我的GitHub~感谢观看! 微 ...
- 线性回归和梯度下降代码demo
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...
随机推荐
- 变量类型-Tuple
教程:一:元组的创建 元组(tuple)与列表类似,不同之处在于元组的元素不能修改 (1)tuple写在圆括号之间,元素用逗号隔开 (2)元组元素的类型可以不同 (3) ...
- javascript基础常识了解一下
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Exception in thread "main" java.lang.IllegalStateException: Failed to read Class-Path attribute from manifest of jar file:
表示jar所在位置文件夾中沒有下載好,將目標目錄刪除,重新maven下就好了
- Jenkins调度Selenium脚本不能打开浏览器解决办法
前提:在Myeclipse里面可以启动起来浏览器,在Jenkins中不能启动浏览器 原因:以程序的方式安装了jenkins,jenkins就成了windows的一个服务了,默认是设置为自动启动的如下图 ...
- 海思编译链编译出现__aeabi_unwind_cpp_pr1重定义怎么回事
1.用arm-hisiv100nptl-linux-gcc编译代码,结果发现报错,__aeabi_unwind_cpp_pr1重定义,在librt.a先定义,使用的海思芯片是hi3520d. 2.本来 ...
- html实现调用jar包
整体思路:html引用URL protocol-本地注册表key,key对应某一c#写的exe可执行文件,由exe可执行文件调用cmd,cmd执行jar包. 1.添加注册表: Windows Regi ...
- 允许浏览器下载exe.config文件
进入系统目录 %windir%\System32\inetsrv\config\ 编辑IIS配置文件 applicationHost.config 找到如下行 <requestFiltering ...
- STP(Spanning Tree Protocol)
STP生成树协议 问题 为了提高网络的可用性,需要进行冗余和备份.但是冗余路径会产生环路 环路会导致以下问题 广播风暴:由于交换机会对广播.多播.和未知目标MAC的单播包进行泛洪,在存在环路的情况 ...
- NSRunLoop 在mac command line tool上的部分运用
首先RunLoop相关博客参考这篇https://blog.csdn.net/lengshengren/article/details/12905627. 最近开发了一个mac上的命令行工具,我在主线 ...
- vue Baidu Map --- vue百度地图插件
vue Baidu Map 官网:https://dafrok.github.io/vue-baidu-map/#/zh/start/installation javascript 官网:http:/ ...