写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT

(不是每个人都有那么厉害啊 , 我好菜啊)

而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT

后来做了 HDU 4035 终于会了.... 感谢 雕哥的帮助 !!!

题意

#2542. 「PKUWC 2018」随机游走

题解

原本的模型好像我不会那个暴力dp .... 就是直接统计点集中最后经过的点的期望 , 也就是点集中到所有点步数最大值的期望 . (也许可以列方程高斯消元 ? 似乎没分)

但我们考虑转化一下 (因为原来 有道CLJ的题 也是求这个) 把最大值的期望用 最值反演(MinMax容斥) 转化成最小值的期望 就可以算了 ...

最值反演 (又称 MinMax容斥 ) :

\[\displaystyle \max\{S\}=\sum_{T\subseteq S, T \not = \varnothing}(-1)^{|T|-1}\min\{T\}
\]

其中 \(S\) 是全集 , \(T\) 是它的一个子集 , 就有这个神奇的定理 ...

证明 ( 来自 DOFY大大的博客 ) :

设最大值为 \(x \in S\) ,那么构造映射 \(f(T) \to x \in T~?~T−x:T+x\) , 也就是有 \(x\) 就去掉 , 没有就加上 。那么当 \(T\) 不为空和 \(\{x\}\) 时,\(T\) 与 \(f(T)\) 因为只相差一个最大值,最小值肯定相同,集合大小只相差 \(1\) ,就抵消了(一一映射),因为没有空集,所以最后只剩下 \(\{x\}\) 的贡献。

然后有了这个 , 每次我们只需要求经过点集中点步数最少的贡献 .

假设我们当前有一个集合 \(S\) , 我们用 \(f(u)\) 表示从 \(u\) 出发 , 第一次访问 \(S\) 中节点的期望步数 .

所以我们有一些显然的式子 :

  1. \(u \in S:\)

    \[f(u)=0
    \]

  2. \(u \not \in S:\)

    令 \(d[u]\) 为 \(u\) 在树上的度数(连出来边数) , \(\mathrm{ch}[u]\) 为 \(u\) 的儿子 , \(\mathrm{fa}[u]\) 为 \(u\) 的父亲 .

    \[\displaystyle f(u)=[f(\mathrm{fa}[u])+1+\sum (f(\mathrm{ch[u]})+1)] \times \frac{1}{d[u]}
    \]

    \[\displaystyle =\frac{1}{d[u]}f(\mathrm{fa}[u])+\frac{1}{d[u]}\sum f(\mathrm{ch}[u])+1
    \]

不难发现 每个点的答案可以只保留它父亲的答案和一个常数的贡献

( 可以理解成全都能倒推回去 , 因为那个就算没有 \(u \in S\) 的限制 , 叶子的贡献也只与父亲有关 )

假设令它为 $$f(u)=A_uf(\mathrm{fa}[u])+B_u$$

以及 \(v = \mathrm{ch}[u]\)

那么有 $$\displaystyle \sum f(\mathrm{ch[u]})=\sum f(v) = \sum(A_v f_u + B_v)$$

把这个回代就有

\[\displaystyle (1-\frac{\sum A_v}{d[u]}) f(u) = \frac{1}{d[u]}f(\mathrm{fa}[u])+(1+\frac{\sum B_v}{d[u]})
\]

除过去就可以得到每个递推式的 \(A,B\) 了 qwq

然后随便写写就行啦 , 复杂度 \(O((n+Q) \cdot 2^n)\) ... 其实后面那个复杂度是对于每个询问枚举子集 .

预处理的话 , 复杂度就变成 \(O(n\cdot 2^n + 3^n)\) 啦 ...

本人利用了一下 \(FMT\) 的子集和变换把复杂度优化到 \(O(n \cdot 2^n + q)\) 。比较好写(好背)。

似乎都可以轻松过掉 ? 主要没有卡询问的复杂度。

代码

#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("2542.in", "r", stdin);
freopen ("2542.out", "w", stdout);
#endif
} typedef long long ll;
const int Mod = 998244353; inline ll fpm(ll x, int power) {
ll res = 1; x = (x % Mod + Mod) % Mod;
for (; power; power >>= 1, (x *= x) %= Mod)
if (power & 1) (res *= x) %= Mod;
return res;
} const int N = 20;
int n, Q, rt, d[N];
vector<int> G[N]; ll A[N], B[N], invd[N]; void Dp(int u, int fa, int S) {
if ((1 << (u - 1)) & S) { A[u] = B[u] = 0; return ; } ll totA = 0, totB = 0;
for (int v : G[u]) if (v ^ fa)
Dp(v, u, S), totA += A[v], totB += B[v];
totA %= Mod, totB %= Mod; ll coef = fpm(Mod + 1 - totA * invd[u], Mod - 2);
A[u] = invd[u] * coef % Mod;
B[u] = (1 + totB * invd[u] % Mod) * coef % Mod;
} ll Minv[1 << 18]; int bit[1 << 18]; int ans[1 << 18]; int main () {
File(); n = read(); Q = read(); rt = read();
For (i, 1, n - 1) {
int u = read(), v = read();
G[u].push_back(v); G[v].push_back(u);
++ d[u]; ++ d[v];
}
For (i, 1, n) invd[i] = fpm(d[i], Mod - 2); int maxsta = (1 << n) - 1;
For (i, 0, maxsta) {
Dp(rt, 0, i);
Minv[i] = B[rt];
bit[i] = bit[i >> 1] + (i & 1);
ans[i] = ((bit[i] & 1 ? 1 : -1) * Minv[i] + Mod) % Mod;
} For (j, 0, n - 1) For (i, 0, maxsta)
if (i >> j & 1) (ans[i] += ans[i ^ (1 << j)]) %= Mod; while (Q --) {
int k = read(), sta = 0;
while (k --) sta |= (1 << (read() - 1));
printf ("%d\n", ans[sta]);
} return 0;
}

LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)的更多相关文章

  1. 【LOJ 2542】【PKUWC2018】 随机游走(最值反演 + 树上期望dp)

    哇我太菜啦555555 不妨钦定我们需要访问的点集为$S$,在$S$已知的情况下,我们令$f(x) $表示从$x$走到点集$S$中任意一点的期望步数. 若$x∈S$,则显然$f(x)=0$,否则$f[ ...

  2. loj 2542 随机游走 —— 最值反演+树上期望DP+fmt

    题目:https://loj.ac/problem/2542 因为走到所有点的期望就是所有点期望的最大值,所以先最值反演一下,问题变成从根走到一个点集任意一点就停止的期望值: 设 \( f[x] \) ...

  3. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  4. 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元

    题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  5. LOJ2542 随机游走 Min-Max容斥+树上期望DP

    搞了一下午 真的是啥都不会 首先这道题要用到Min-Max容斥 得到的结论是 设 $Max(S)$表示集合里最晚被访问的节点被访问的期望步数 设 $Min(S)$表示集合里最早被访问的节点被访问的期望 ...

  6. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  7. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  8. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

  9. LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)

    题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...

随机推荐

  1. 爬虫入门(四)——Scrapy框架入门:使用Scrapy框架爬取全书网小说数据

    为了入门scrapy框架,昨天写了一个爬取静态小说网站的小程序 下面我们尝试爬取全书网中网游动漫类小说的书籍信息. 一.准备阶段 明确一下爬虫页面分析的思路: 对于书籍列表页:我们需要知道打开单本书籍 ...

  2. WebGL 纹理颜色原理

    本文由云+社区发表 作者:ivweb qcyhust 导语 WebGL绘制图像时,往着色器中传入颜色信息就可以给图形绘制出相应的颜色,现在已经知道顶点着色器和片段着色器一起决定着向颜色缓冲区写入颜色信 ...

  3. EF 的 CURD 操作

    EF 的 CURD 操作 这里采用了数据库 Northwind,下载地址:https://northwinddatabase.codeplex.com/ 增 /// <summary> / ...

  4. [C#] C# 知识回顾 - 装箱与拆箱

    装箱与拆箱 目录 生活中的装箱与拆箱 C# 的装箱与拆箱 值类型和引用类型 装箱 拆箱 读者见解 生活中的装箱与拆箱    我们习惯了在网上购物,这次你想买本编程书 -- <C 语言从入门到放弃 ...

  5. 通过拼接SQL字符串实现多条件查询

    一.通过拼接SQL字符串的方法的好处是: 1.方便查询条件的扩展. 2.简化业务逻辑的判断. 二.例子: 1.界面设计 2.点击查询的代码 /// <summary> /// 按条件查询 ...

  6. [Linux] memache打印所有的key

    1.在使用memcache的时候 , 经常需要查看下里面存储的值 , 前提是要先知道key是啥,memcache没有redis的keys命令 2.下面两个命令的结合,可以查看到key stats it ...

  7. Beanstalkd,zeromq,rabbitmq的区别

    1).rabbitmq(功能强大,管理应用也完善,不过也比较重量级)2).zeromq(从rabbitmq出来的一个小而快速的队列,基本是目前最快的队列机制,自身支持多种模式,可以对各个模式进行自己组 ...

  8. ajax点击加载更多数据图片(预加载)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. REST风格下如何放行静态资源

    在配置DispatcherServlet(前端控制器)时,如果把拦截路径配置成rest风格(即斜杠/),则会将静态资源也一并拦截(比如.css .js ,jpg)为了避免这个情况,可以把拦截路径设置成 ...

  10. Dynamics 365的审核日志分区删除超时报错怎么办?

    摘要: 本人微信公众号:微软动态CRM专家罗勇 ,回复296或者20190112可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me ...