Topologies on product spaces of $\mathbb{R}$ and their relationships
In this post, I will summarise several topologies established on the product spaces of \(\mathbb{R}\), i.e. \(\mathbb{R}^n\), \(\mathbb{R}^{\omega}\) and \(\mathbb{R}^J\), as well as their relationships.
Topologies on product spaces of \(\mathbb{R}\)
- Topology induced from the euclidean metric \(d\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
\[
d(\vect{x}, \vect{y}) = \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
\] - Topology induced from the square metric \(\rho\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
\[
\rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i}.
\] Product topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\) and only a finite number of them are not equal to \(\mathbb{R}\).
Specifically, when \(J = \mathbb{Z}_+\), the product topology on \(\mathbb{R}^{\omega}\) can be constructed.
Box topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\).
Specifically, when \(J = \mathbb{Z}_+\), the box topology on \(\mathbb{R}^{\omega}\) can be constructed.
Uniform topology on \(\mathbb{R}^J\): it is induced by the uniform metric \(\bar{\rho}\) on \(\mathbb{R}^J\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^J\),
\[
\bar{\rho}(\vect{x}, \vect{y}) = \sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \}
\]
with \(\bar{d}\) being the standard bounded metric on \(\mathbb{R}\).Specifically, when \(J = \mathbb{Z}_+\), the uniform topology on \(\mathbb{R}^{\omega}\) can be obtained.
When \(J = n\), the topology induced from the metric \(\bar{\rho}\) on \(\mathbb{R}^n\) is equivalent to the topology induced from the square metric \(\rho\).
Topology induced from the metric \(D\) on \(\mathbb{R}^{\omega}\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^{\omega}\),
\[
D(\vect{x}, \vect{y}) = \sup_{i \in \mathbb{Z}_+} \left\{ \frac{\bar{d}(x_i, y_i)}{i} \right\},
\]
which is transformed from the uniform metric \(\bar{\rho}\) by suppressing its high frequency component.Specifically, when \(J = n\), the topology induced from the metric \(D\) is equivalent to the topology induced from the metric \(\bar{\rho}\) and hence is also equivalent to the topology induced from the square metric \(\rho\).
N.B. In the definitions of product topology and box topology for \(\mathbb{R}^J\) as above, the openness of \(U_{\alpha}\) in \(\mathbb{R}\) is with respect to the standard topology on \(\mathbb{R}\), which does not require a metric to be induced from but only depends on the order relation on \(\mathbb{R}\).
Relationships between topologies on product spaces of \(\mathbb{R}\)
According to Theorem 20.3 and Theorem 20.4, the following points about the relationships between topologies on product spaces of \(\mathbb{R}\) are summarised.
- On \(\mathbb{R}^n\): Topology induced from \(\rho\) \(\Leftrightarrow\) Uniform topology induced from \(\bar{\rho}\) \(\Leftrightarrow\) Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\Leftrightarrow\) Box topology.
- On \(\mathbb{R}^{\omega}\): Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.
- On \(\mathbb{R}^J\): Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.
It can be seen that the finite dimensional Euclidean space \(\mathbb{R}^n\) has the most elegant property, where all topologies are equivalent.
Topologies on product spaces of $\mathbb{R}$ and their relationships的更多相关文章
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- 两个1/x类的广义函数
[转载请注明出处]http://www.cnblogs.com/mashiqi 2017/04/15 1.$\text{p.v.}\,\frac{1}{x}$ 因为$(x \ln x - x)' = ...
- parallelogram
The parallelogram law in inner product spaces Vectors involved in the parallelogram law. In a normed ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- 【读书笔记】:MIT线性代数(5):Four fundamental subspaces
At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...
- The Integers and the Real Numbers
以上我們談了一些 邏輯的基礎,接下來我們會談一些 數學的基礎,也就是整數與實數系統.其實我們已經用了很多,非正式地,接下來我們會正式地討論他們. 要 建構 實數系統的一個方法就是利用公理跟集合論來建構 ...
- Orthogonal Convolutional Neural Networks
目录 概 主要内容 符号说明 的俩种表示 kernel orthogonal regularization orthogonal convolution Wang J, Chen Y, Chakrab ...
- If the parts of an organization (e.g., teams, departments, or subdivisions) do not closely reflect the essential parts of the product, or if the relationship between organizations do not reflect the r
https://en.wikipedia.org/wiki/Conway%27s_law
随机推荐
- 处理 Vue 单页面应用 SEO
由于在vue单页应用中title只设定在入口文件index.html,如果切换路由,title怎么更换? 在路由router中设置meta: { path:'/chooseBrand', compon ...
- 多输入select
目录 多输入select IO模型 select介绍 小demo 注意 引入电子书 title: 多输入select date: 2019/3/20 17:21:34 toc: true --- 多输 ...
- 数据结构与算法之美学习笔记:B+树(第48讲)
一.解决问题的前提是定义清楚问题 通过对一些模糊需求进行假设,来限定要解决问题的范围 根据某个值查找数据,比如 select * from use where id=1234: 根据区间值来查询某些数 ...
- 值得一学的webpack4
初识webpack webpack是帮助我们管理复杂项目的工具. 学习webpack会极大扩充前端开发视野. webpack可以实现: Tree shaking 懒加载 代码分割 webpack4速度 ...
- idea中如何添加RunDashboard
在微服务开发中,往往要同时启动多个服务,这时候使用Run控制台难免会出错,并且不方便管理,这里推荐一个功能Run Dashboard idea中打开Run Dashboard的方法如下 view &g ...
- 基于jeesite的cms系统(四):使用Beetl模版引擎在后端渲染数据
一.Beetl简介 1. 什么是Beetl Beetl目前版本是2.9.3,相对于其他java模板引擎,具有功能齐全,语法直观,性能超高,以及编写的模板容易维护等特点.使得开发和维护模板有很好的体验. ...
- java构造方法的重载
package test; public class Person { String name; int age; public Person() { System.out.println(" ...
- DUMP 3.8 企业级电商项目 支付宝之类
① 沙箱登录:https://openhome.alipay.com/platform/appDaily.htm 获得一个 使用环境描述 APPID.授权回调地址.沙箱钱包哪里下载之类的 ② 沙箱环境 ...
- 解决系统中大量的TIME_WAIT连接
今天发现网站特别卡!! 查看网络连接数: netstat -an |wc -l netstat -an |grep xx |wc -l 查看某个/特定ip的连接数 netstat -an ...
- Python编程四大神兽:迭代器、生成器、闭包和装饰器
生成器 生成器是生成一个值的特殊函数,它具有这样一个特点:第一次执行该函数时,先从头按顺序执行,在碰到yield关键字时该函数会暂停执行该函数后续的代码,并且返回一个值:在下一次调用该函数执行时,程序 ...