In this post, I will summarise several topologies established on the product spaces of \(\mathbb{R}\), i.e. \(\mathbb{R}^n\), \(\mathbb{R}^{\omega}\) and \(\mathbb{R}^J\), as well as their relationships.

Topologies on product spaces of \(\mathbb{R}\)

  1. Topology induced from the euclidean metric \(d\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    d(\vect{x}, \vect{y}) = \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
    \]
  2. Topology induced from the square metric \(\rho\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    \rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i}.
    \]
  3. Product topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\) and only a finite number of them are not equal to \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the product topology on \(\mathbb{R}^{\omega}\) can be constructed.

  4. Box topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the box topology on \(\mathbb{R}^{\omega}\) can be constructed.

  5. Uniform topology on \(\mathbb{R}^J\): it is induced by the uniform metric \(\bar{\rho}\) on \(\mathbb{R}^J\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^J\),
    \[
    \bar{\rho}(\vect{x}, \vect{y}) = \sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \}
    \]
    with \(\bar{d}\) being the standard bounded metric on \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the uniform topology on \(\mathbb{R}^{\omega}\) can be obtained.

    When \(J = n\), the topology induced from the metric \(\bar{\rho}\) on \(\mathbb{R}^n\) is equivalent to the topology induced from the square metric \(\rho\).

  6. Topology induced from the metric \(D\) on \(\mathbb{R}^{\omega}\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^{\omega}\),
    \[
    D(\vect{x}, \vect{y}) = \sup_{i \in \mathbb{Z}_+} \left\{ \frac{\bar{d}(x_i, y_i)}{i} \right\},
    \]
    which is transformed from the uniform metric \(\bar{\rho}\) by suppressing its high frequency component.

    Specifically, when \(J = n\), the topology induced from the metric \(D\) is equivalent to the topology induced from the metric \(\bar{\rho}\) and hence is also equivalent to the topology induced from the square metric \(\rho\).

N.B. In the definitions of product topology and box topology for \(\mathbb{R}^J\) as above, the openness of \(U_{\alpha}\) in \(\mathbb{R}\) is with respect to the standard topology on \(\mathbb{R}\), which does not require a metric to be induced from but only depends on the order relation on \(\mathbb{R}\).

Relationships between topologies on product spaces of \(\mathbb{R}\)

According to Theorem 20.3 and Theorem 20.4, the following points about the relationships between topologies on product spaces of \(\mathbb{R}\) are summarised.

  1. On \(\mathbb{R}^n\): Topology induced from \(\rho\) \(\Leftrightarrow\) Uniform topology induced from \(\bar{\rho}\) \(\Leftrightarrow\) Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\Leftrightarrow\) Box topology.
  2. On \(\mathbb{R}^{\omega}\): Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.
  3. On \(\mathbb{R}^J\): Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.

It can be seen that the finite dimensional Euclidean space \(\mathbb{R}^n\) has the most elegant property, where all topologies are equivalent.

Topologies on product spaces of $\mathbb{R}$ and their relationships的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  3. 两个1/x类的广义函数

    [转载请注明出处]http://www.cnblogs.com/mashiqi 2017/04/15 1.$\text{p.v.}\,\frac{1}{x}$ 因为$(x \ln x - x)' = ...

  4. parallelogram

    The parallelogram law in inner product spaces Vectors involved in the parallelogram law. In a normed ...

  5. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  6. 【读书笔记】:MIT线性代数(5):Four fundamental subspaces

    At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...

  7. The Integers and the Real Numbers

    以上我們談了一些 邏輯的基礎,接下來我們會談一些 數學的基礎,也就是整數與實數系統.其實我們已經用了很多,非正式地,接下來我們會正式地討論他們. 要 建構 實數系統的一個方法就是利用公理跟集合論來建構 ...

  8. Orthogonal Convolutional Neural Networks

    目录 概 主要内容 符号说明 的俩种表示 kernel orthogonal regularization orthogonal convolution Wang J, Chen Y, Chakrab ...

  9. If the parts of an organization (e.g., teams, departments, or subdivisions) do not closely reflect the essential parts of the product, or if the relationship between organizations do not reflect the r

    https://en.wikipedia.org/wiki/Conway%27s_law

随机推荐

  1. NameNode和SecondaryNameNode工作原理剖析

    NameNode和SecondaryNameNode工作原理剖析 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.NameNode中的元数据是存储在那里的? 1>.首先,我 ...

  2. Attention Model(注意力模型)思想初探

    1. Attention model简介 0x1:AM是什么 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但 ...

  3. VMware 安装Linux系统 CentOS

    VMware 安装Linux系统 CentOS 1.  下载镜像系统 centos镜像下载地址:https://www.centos.org/download/ 选择DVD下载即可 linux各版本下 ...

  4. 自搭的一个系统框架,使用Spring boot+Vue+Element

    基于:jdk1.8.spring boot2.1.3.vue-cli3.4.1 特性:    ~ 数据库访问使用spring data jpa+alibaba druid    ~ 前后端数据交互使用 ...

  5. SQL数字型注入代码审计

    数字型注入 SQL注入攻击,简称注入攻击,是发生于应用程序与数据库层的安全漏洞. 简而言之,是在输入的字符串之中注入sql指定,在设计不良的程序当中忽略了检查,那么这些注入进去的指令就会被数据库服务器 ...

  6. java基于redis事务的秒杀实现

    package com.vian.user.service; import org.junit.Test; import org.springframework.util.CollectionUtil ...

  7. How to Create UML in Markdown

    Import yuml class format ![](http://yuml.me/diagram/boring/class/[...]) Create your own class Person ...

  8. Ubuntu18.04环境下melodic安装gmapping

    Ubuntu18.04 环境下melodic中很多包没有提供sudo apt install的安装方式,需要通过源代码安装,安装方法如下: 1.先安装依赖库: sudo apt--dev sudo a ...

  9. vscode-Live Server的使用心得

    一,安装Live Server插件(不详细说明了) 二,开启Server(服务) 有四种方式: 在窗口的最底部有Go Live可以点击,一旦点击,就会自动在浏览器中打开HTML文件 在HTML文件中右 ...

  10. Excel如何快速统计一列中相同数值出现的个数--数据透视表

    excel如何快速统计一列中相同数值出现的个数_百度经验 --这里介绍了两种解决方式,用第一种https://jingyan.baidu.com/article/9113f81b2c16822b321 ...