In this post, I will summarise several topologies established on the product spaces of \(\mathbb{R}\), i.e. \(\mathbb{R}^n\), \(\mathbb{R}^{\omega}\) and \(\mathbb{R}^J\), as well as their relationships.

Topologies on product spaces of \(\mathbb{R}\)

  1. Topology induced from the euclidean metric \(d\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    d(\vect{x}, \vect{y}) = \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
    \]
  2. Topology induced from the square metric \(\rho\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    \rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i}.
    \]
  3. Product topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\) and only a finite number of them are not equal to \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the product topology on \(\mathbb{R}^{\omega}\) can be constructed.

  4. Box topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the box topology on \(\mathbb{R}^{\omega}\) can be constructed.

  5. Uniform topology on \(\mathbb{R}^J\): it is induced by the uniform metric \(\bar{\rho}\) on \(\mathbb{R}^J\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^J\),
    \[
    \bar{\rho}(\vect{x}, \vect{y}) = \sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \}
    \]
    with \(\bar{d}\) being the standard bounded metric on \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the uniform topology on \(\mathbb{R}^{\omega}\) can be obtained.

    When \(J = n\), the topology induced from the metric \(\bar{\rho}\) on \(\mathbb{R}^n\) is equivalent to the topology induced from the square metric \(\rho\).

  6. Topology induced from the metric \(D\) on \(\mathbb{R}^{\omega}\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^{\omega}\),
    \[
    D(\vect{x}, \vect{y}) = \sup_{i \in \mathbb{Z}_+} \left\{ \frac{\bar{d}(x_i, y_i)}{i} \right\},
    \]
    which is transformed from the uniform metric \(\bar{\rho}\) by suppressing its high frequency component.

    Specifically, when \(J = n\), the topology induced from the metric \(D\) is equivalent to the topology induced from the metric \(\bar{\rho}\) and hence is also equivalent to the topology induced from the square metric \(\rho\).

N.B. In the definitions of product topology and box topology for \(\mathbb{R}^J\) as above, the openness of \(U_{\alpha}\) in \(\mathbb{R}\) is with respect to the standard topology on \(\mathbb{R}\), which does not require a metric to be induced from but only depends on the order relation on \(\mathbb{R}\).

Relationships between topologies on product spaces of \(\mathbb{R}\)

According to Theorem 20.3 and Theorem 20.4, the following points about the relationships between topologies on product spaces of \(\mathbb{R}\) are summarised.

  1. On \(\mathbb{R}^n\): Topology induced from \(\rho\) \(\Leftrightarrow\) Uniform topology induced from \(\bar{\rho}\) \(\Leftrightarrow\) Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\Leftrightarrow\) Box topology.
  2. On \(\mathbb{R}^{\omega}\): Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.
  3. On \(\mathbb{R}^J\): Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.

It can be seen that the finite dimensional Euclidean space \(\mathbb{R}^n\) has the most elegant property, where all topologies are equivalent.

Topologies on product spaces of $\mathbb{R}$ and their relationships的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  3. 两个1/x类的广义函数

    [转载请注明出处]http://www.cnblogs.com/mashiqi 2017/04/15 1.$\text{p.v.}\,\frac{1}{x}$ 因为$(x \ln x - x)' = ...

  4. parallelogram

    The parallelogram law in inner product spaces Vectors involved in the parallelogram law. In a normed ...

  5. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  6. 【读书笔记】:MIT线性代数(5):Four fundamental subspaces

    At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...

  7. The Integers and the Real Numbers

    以上我們談了一些 邏輯的基礎,接下來我們會談一些 數學的基礎,也就是整數與實數系統.其實我們已經用了很多,非正式地,接下來我們會正式地討論他們. 要 建構 實數系統的一個方法就是利用公理跟集合論來建構 ...

  8. Orthogonal Convolutional Neural Networks

    目录 概 主要内容 符号说明 的俩种表示 kernel orthogonal regularization orthogonal convolution Wang J, Chen Y, Chakrab ...

  9. If the parts of an organization (e.g., teams, departments, or subdivisions) do not closely reflect the essential parts of the product, or if the relationship between organizations do not reflect the r

    https://en.wikipedia.org/wiki/Conway%27s_law

随机推荐

  1. 如何隐藏overflow: scroll的滚动条

    css3有一个直接调用的css,保证隐藏滚动条的同时还可以继续通过滚轮向下翻 ::-webkit-scrollbar { /*隐藏滚轮*/ display: none; } 但是仅限于支持css3的浏 ...

  2. Java设计模式--装饰器模式到Java IO 流

    装饰器模式 抽象构件角色:给出一个抽象接口,以规范准备接受附加责任的对象. 具体构件角色:定义准备接受附加责任的对象. 抽象装饰角色:持有一个构件对象的实例,并对应一个与抽象构件接口一致的接口. 具体 ...

  3. Vue(小案例_vue+axios仿手机app)_购物车(二模拟淘宝购物车页面,点击加减做出相应变化)

    一.前言 在上篇购物车中,如果用户刷新了当前的页面,底部导航中的数据又会恢复为原来的: 1.解决刷新,购物车上数值不变                                         ...

  4. django-crontab实现定时任务

    django-crontab实现服务端的定时任务 安装 pip install django-crontab 在Django项目中使用 settings.py INSTALLED_APPS = ( ' ...

  5. Ubuntu16.04的图形化界面无法启动问题

    昨晚在 Ubuntu 下试图安装笔记本触控板的驱动的时候,突然 Ubuntu 的图形化界面不见了,尝试了 Ctrl + Alt + F1.F2.F3...无果,又在一些博客的指导下尝试在命令行使用 s ...

  6. ASP.Net获取Aras连接,并获取Innovator实例

    首先需要在自己的项目bin目录下引入Aras的dll(../Aras\Innovator\Innovator\Server\bin). 注意:在引入Aras的dll时.需要注意自己的操作系统的位数.因 ...

  7. Spring Cloud微服务实践之路- Eureka Server 中的第一个异常

    EMERGENCY! EUREKA MAY BE INCORRECTLY CLAIMING INSTANCES ARE UP WHEN THEY'RE NOT. RENEWALS ARE LESSER ...

  8. 【尚学堂·Hadoop学习】MapReduce案例2--好友推荐

    案例描述 根据好友列表,推荐好友的好友 数据集 tom hello hadoop cat world hadoop hello hive cat tom hive mr hive hello hive ...

  9. 软件测试面试-必掌握的 Linux常用命令大全--2.0更新版!

  10. “放到桌面”的Servlet实现

    复习下Servlet下载文件, 当response把ContentType设置成application/xxxx的时候呢,浏览器会默认启动下载,而不是试图打开. 通过给httpHeader里面加入内容 ...