In this post, I will summarise several topologies established on the product spaces of \(\mathbb{R}\), i.e. \(\mathbb{R}^n\), \(\mathbb{R}^{\omega}\) and \(\mathbb{R}^J\), as well as their relationships.

Topologies on product spaces of \(\mathbb{R}\)

  1. Topology induced from the euclidean metric \(d\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    d(\vect{x}, \vect{y}) = \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
    \]
  2. Topology induced from the square metric \(\rho\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    \rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i}.
    \]
  3. Product topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\) and only a finite number of them are not equal to \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the product topology on \(\mathbb{R}^{\omega}\) can be constructed.

  4. Box topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the box topology on \(\mathbb{R}^{\omega}\) can be constructed.

  5. Uniform topology on \(\mathbb{R}^J\): it is induced by the uniform metric \(\bar{\rho}\) on \(\mathbb{R}^J\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^J\),
    \[
    \bar{\rho}(\vect{x}, \vect{y}) = \sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \}
    \]
    with \(\bar{d}\) being the standard bounded metric on \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the uniform topology on \(\mathbb{R}^{\omega}\) can be obtained.

    When \(J = n\), the topology induced from the metric \(\bar{\rho}\) on \(\mathbb{R}^n\) is equivalent to the topology induced from the square metric \(\rho\).

  6. Topology induced from the metric \(D\) on \(\mathbb{R}^{\omega}\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^{\omega}\),
    \[
    D(\vect{x}, \vect{y}) = \sup_{i \in \mathbb{Z}_+} \left\{ \frac{\bar{d}(x_i, y_i)}{i} \right\},
    \]
    which is transformed from the uniform metric \(\bar{\rho}\) by suppressing its high frequency component.

    Specifically, when \(J = n\), the topology induced from the metric \(D\) is equivalent to the topology induced from the metric \(\bar{\rho}\) and hence is also equivalent to the topology induced from the square metric \(\rho\).

N.B. In the definitions of product topology and box topology for \(\mathbb{R}^J\) as above, the openness of \(U_{\alpha}\) in \(\mathbb{R}\) is with respect to the standard topology on \(\mathbb{R}\), which does not require a metric to be induced from but only depends on the order relation on \(\mathbb{R}\).

Relationships between topologies on product spaces of \(\mathbb{R}\)

According to Theorem 20.3 and Theorem 20.4, the following points about the relationships between topologies on product spaces of \(\mathbb{R}\) are summarised.

  1. On \(\mathbb{R}^n\): Topology induced from \(\rho\) \(\Leftrightarrow\) Uniform topology induced from \(\bar{\rho}\) \(\Leftrightarrow\) Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\Leftrightarrow\) Box topology.
  2. On \(\mathbb{R}^{\omega}\): Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.
  3. On \(\mathbb{R}^J\): Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.

It can be seen that the finite dimensional Euclidean space \(\mathbb{R}^n\) has the most elegant property, where all topologies are equivalent.

Topologies on product spaces of $\mathbb{R}$ and their relationships的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  3. 两个1/x类的广义函数

    [转载请注明出处]http://www.cnblogs.com/mashiqi 2017/04/15 1.$\text{p.v.}\,\frac{1}{x}$ 因为$(x \ln x - x)' = ...

  4. parallelogram

    The parallelogram law in inner product spaces Vectors involved in the parallelogram law. In a normed ...

  5. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  6. 【读书笔记】:MIT线性代数(5):Four fundamental subspaces

    At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...

  7. The Integers and the Real Numbers

    以上我們談了一些 邏輯的基礎,接下來我們會談一些 數學的基礎,也就是整數與實數系統.其實我們已經用了很多,非正式地,接下來我們會正式地討論他們. 要 建構 實數系統的一個方法就是利用公理跟集合論來建構 ...

  8. Orthogonal Convolutional Neural Networks

    目录 概 主要内容 符号说明 的俩种表示 kernel orthogonal regularization orthogonal convolution Wang J, Chen Y, Chakrab ...

  9. If the parts of an organization (e.g., teams, departments, or subdivisions) do not closely reflect the essential parts of the product, or if the relationship between organizations do not reflect the r

    https://en.wikipedia.org/wiki/Conway%27s_law

随机推荐

  1. 处理 Vue 单页面应用 SEO

    由于在vue单页应用中title只设定在入口文件index.html,如果切换路由,title怎么更换? 在路由router中设置meta: { path:'/chooseBrand', compon ...

  2. 多输入select

    目录 多输入select IO模型 select介绍 小demo 注意 引入电子书 title: 多输入select date: 2019/3/20 17:21:34 toc: true --- 多输 ...

  3. 数据结构与算法之美学习笔记:B+树(第48讲)

    一.解决问题的前提是定义清楚问题 通过对一些模糊需求进行假设,来限定要解决问题的范围 根据某个值查找数据,比如 select * from use where id=1234: 根据区间值来查询某些数 ...

  4. 值得一学的webpack4

    初识webpack webpack是帮助我们管理复杂项目的工具. 学习webpack会极大扩充前端开发视野. webpack可以实现: Tree shaking 懒加载 代码分割 webpack4速度 ...

  5. idea中如何添加RunDashboard

    在微服务开发中,往往要同时启动多个服务,这时候使用Run控制台难免会出错,并且不方便管理,这里推荐一个功能Run Dashboard idea中打开Run Dashboard的方法如下 view &g ...

  6. 基于jeesite的cms系统(四):使用Beetl模版引擎在后端渲染数据

    一.Beetl简介 1. 什么是Beetl Beetl目前版本是2.9.3,相对于其他java模板引擎,具有功能齐全,语法直观,性能超高,以及编写的模板容易维护等特点.使得开发和维护模板有很好的体验. ...

  7. java构造方法的重载

    package test; public class Person { String name; int age; public Person() { System.out.println(" ...

  8. DUMP 3.8 企业级电商项目 支付宝之类

    ① 沙箱登录:https://openhome.alipay.com/platform/appDaily.htm 获得一个 使用环境描述 APPID.授权回调地址.沙箱钱包哪里下载之类的 ② 沙箱环境 ...

  9. 解决系统中大量的TIME_WAIT连接

    今天发现网站特别卡!! 查看网络连接数: netstat -an |wc -l netstat -an |grep xx |wc -l        查看某个/特定ip的连接数 netstat -an ...

  10. Python编程四大神兽:迭代器、生成器、闭包和装饰器

    生成器 生成器是生成一个值的特殊函数,它具有这样一个特点:第一次执行该函数时,先从头按顺序执行,在碰到yield关键字时该函数会暂停执行该函数后续的代码,并且返回一个值:在下一次调用该函数执行时,程序 ...