[SCOI2015]小凸想跑步
题目描述
小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏。
操场是个凸 n 边形, nn 个顶点按照逆时针从 0 ∼n−1 编号。现在小凸随机站在操场中的某个位置,标记为p点。将 p 点与 n个顶点各连一条边,形成 n个三角形。如果这时p 点, 0号点, 1号点形成的三角形的面 积是 n个三角形中最小的一个,小凸则认为这是一次正确站位。
现在小凸想知道他一次站位正确的概率是多少。
题解
我们其实是要找到一个p点,使得pp0*pp1<=ppi*ppi+1.
然后我们把上面的式子展开,然后化简,这个不难就是挺麻烦的。
最后得到了Ax+By+C<=0的形式,然后可以用(-1e9,y1)(1e9,y2)这条直线来描述这个限制,再加上凸多边形的限制,跑个半平面交就好了。
注意:要特判A或B=0的情况。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#define N 200009
#define double long double
#define eq(x,y) (fabs((x)-(y))<eps)
using namespace std;
const double eps=1e-;
int n,top,tot;
double x[N],y[N],s,S;
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct point{
double x,y;
point(double xx=,double yy=){x=xx;y=yy;}
inline point operator +(const point &b)const{return point{x+b.x,y+b.y};}
inline point operator -(const point &b)const{return point{x-b.x,y-b.y};}
inline double operator *(const point &b)const{return x*b.y-y*b.x;}
inline point operator *(const double &b)const{return point{x*b,y*b};}
}p[N];
struct line{
point x,y;double ang;
line(double x1=,double x2=,double x3=,double x4=){x.x=x1;x.y=x2;y.x=x3;y.y=x4;}
bool operator <(const line &b)const{
if(fabs(ang-b.ang)<eps)return (y-x)*(b.x-x)<eps;
else return ang<b.ang;
}
}a[N],l[N],q[N];
inline bool left(point a,line b){return (a-b.x)*(b.y-b.x)>-eps;}
inline point jiao(line a,line b){return b.x+(b.y-b.x)*(((b.x-a.x)*(a.y-a.x))/((a.y-a.x)*(b.y-b.x)));}
int main(){
n=rd();
for(int i=;i<n;++i){
x[i]=rd(),y[i]=rd();
if(i)l[++top]=line(x[i-],y[i-],x[i],y[i]);
}
l[++top]=line(x[n-],y[n-],x[],y[]);
for(int i=;i<n;++i)S+=(point(x[i],y[i])-point(x[],y[]))*(point{x[i-],y[i-]}-point{x[],y[]})/;S=fabs(S);
x[n]=x[];y[n]=y[];
for(int i=;i<n;++i){
double a=-y[]+y[]+y[i+]-y[i],b=-x[]+x[]+x[i]-x[i+],c=x[]*y[]-x[]*y[]-x[i]*y[i+]+x[i+]*y[i];
if(fabs(b)<eps){
if(fabs(a)<eps){puts("0.0000");return ;}
double xf=-c/a,xs=xf,yf=,ys=1e15;
if(a<)l[++top]=line(xs,ys,xf,yf);
else l[++top]=line(xf,yf,xs,ys);
}
else{
double xf=-1e11,xs=1e11,yf=(-c-a*xf)/b,ys=(-c-a*xs)/b;
if(b>=){l[++top]=line(xs,ys,xf,yf);
}else l[++top]=line(xf,yf,xs,ys);
}
}
for(int i=;i<=top;++i)l[i].ang=atan2(l[i].y.y-l[i].x.y,l[i].y.x-l[i].x.x);
sort(l+,l+top+);
for(int i=;i<=top;++i)if(i==||fabs(l[i].ang-l[i-].ang)>eps)a[++tot]=l[i];
int h=,t=;q[]=a[];q[]=a[];p[]=jiao(a[],a[]);
for(int i=;i<=tot;++i){
while(h<t&&left(p[t-],a[i]))t--;
while(h<t&&left(p[h],a[i]))h++;
q[++t]=a[i];p[t-]=jiao(q[t-],q[t]);
}
while(h<t&&left(p[h],q[t]))h++;
while(h<t&&left(p[t-],q[h]))t--;
p[t]=jiao(q[t],q[h]);
for(int i=h+;i<=t;++i)s+=(p[i]-p[h])*(p[i-]-p[h])/;s=fabs(s);
printf("%.4LF",s/S);
return ;
}
[SCOI2015]小凸想跑步的更多相关文章
- 【BZOJ4445】[Scoi2015]小凸想跑步 半平面交
[BZOJ4445][Scoi2015]小凸想跑步 Description 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸n边形,N个顶点按照逆时针从0-n-l编号.现 ...
- 【BZOJ4445】[SCOI2015]小凸想跑步(半平面交)
[BZOJ4445][SCOI2015]小凸想跑步(半平面交) 题面 BZOJ 洛谷 题解 首先把点给设出来,\(A(x_a,y_a),B(x_b,y_b),C(x_c,y_c),D(x_d,y_d) ...
- BZOJ 4445 [Scoi2015]小凸想跑步:半平面交
传送门 题意 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 $ n $ 边形,$ n $ 个顶点 $ P_i $ 按照逆时针从 $ 0 $ 至 $ n-1 $ 编号. ...
- bzoj 4445 [SCOI2015] 小凸想跑步
题目大意:一个凸包,随机一个点使得其与前两个点组成的面积比与其他相邻两个点组成的面积小的概率 根据题意列方程,最后求n条直线的交的面积与原凸包面积的比值 #include<bits/stdc++ ...
- 洛谷P4250 [SCOI2015]小凸想跑步(半平面交)
题面 传送门 题解 设\(p\)点坐标为\(x_p,y_p\),那么根据叉积可以算出它与\((i,i+1)\)构成的三角形的面积 为了保证\(p\)与\((0,1)\)构成的面积最小,就相当于它比其它 ...
- BZOJ4445: [Scoi2015]小凸想跑步
裸半平面交. 记得把P0P1表示的半平面加进去,否则点可能在多边形外. #include<bits/stdc++.h> #define N 100009 using namespace s ...
- BZOJ4445 SCOI2015小凸想跑步(半平面交)
考虑怎样的点满足条件.设其为(xp,yp),则要满足(x0-xp,y0-yp)×(x1-xp,y1-yp)<=(xi-xp,yi-yp)×(xi+1-xp,yi+1-yp)对任意i成立.拆开式子 ...
- 2018.10.15 bzoj4445: [Scoi2015]小凸想跑步(半平面交)
传送门 话说去年的省选计算几何难度跟前几年比起来根本不能做啊(虽然去年考的时候并没有学过计算几何) 这题就是推个式子然后上半平面交就做完了. 什么? 怎么推式子? 先把题目的概率转换成求出可行区域. ...
- [bzoj4445] [SCOI2015]小凸想跑步 (半平面交)
题意:凸包上一个点\(p\),使得\(p\)和点\(0,1\)组成的三角形面积最小 用叉积来求: \(p,i,i+1\)组成的三角形面积为: (\(\times\)为叉积) \((p_p-i)\tim ...
随机推荐
- Spring Boot应用总结更新
一.SpringBoot的产生背景: SpringBoot的产生背景伴随着微服务,微服务的相关概念参考上一篇的博客,分布式架构理论: 微服务的宏观概念理解: 将一个大应用拆分成多个小应用,一个小应用是 ...
- 在AndroidStudio上使用AddressSanitizer
在AndroidStudio上使用AddressSanitizer AddressSanitizer是Google主导的一个开源内存问题检测工具.现在也开始支持Android平台,且受Google推荐 ...
- Python_实现json数据的jsonPath(精简版)定位及增删改操作
基于python实现json数据的jsonPath(精简版)定位及增删改操作 by:授客 QQ:1033553122 实践环境 win7 64 Python 3.4.0 代码 #-*- encod ...
- Truffle 4.0、Geth 1.7.2、TestRPC在私有链上搭建智能合约
目录 目录 1.什么是 Truffle? 2.适合 Truffle 开发的客户端 3.Truffle的源代码地址 4.如何安装? 4.1.安装 Go-Ethereum 1.7.2 4.2.安装 Tru ...
- Linux查杀stopped进程
在Linux系统下面,top命令可以查看查看stopped进程.但是不能查看stopped进程的详细信息.那么如何查看stopped 进程,并且杀掉这些stopped进程呢? ps -e j | ...
- Spring MVC 数据绑定 (四)
完整的项目案例: springmvc.zip 目录 实例 项目结构路径: 一.配置web.xml <?xml version="1.0" encoding="UTF ...
- Html 解决数字和字母不换行
在html页面中,如果是数字或者字母显示的话,默认是不换行的.一般显示成这种: 解决方法确实也很简单,设置td或者div为: style="word-break:break-all;&quo ...
- RabbitMQ持久化
我们知道,如果消息接收端挂了,消息会保存在队列里.下次接收端启动就会接收到消息. 如果RabbitMQ挂了怎么办呢?这时候需要将消息持久化到硬盘 消息发送端:producer ........... ...
- zookeeper安装教程(zookeeper3.4.5为例)
zookeeper有单机.伪集群.集群三种部署方式,可根据自己对可靠性的需求选择合适的部署方式.下边对这三种部署方式逐一进行讲解. 一.单机安装 1.1 下载 进入要下载的版本的目录,选择.tar.g ...
- Linux实战教学笔记50:Zabbix监控平台3.2.4(二)深入理解zabbix
https://www.cnblogs.com/chensiqiqi/p/9162986.html 一,Zabbix Web操作深入 1.1 Zabbix Web下的主机和模版以及监控项的添加方式 ( ...