[BZOJ 2480] [SPOJ 3105] Mod
Description
已知数 \(a,p,b\),求满足 \(a^x\equiv b\pmod p\) 的最小自然数 \(x\)。
Input
每个测试文件中最多包含 \(100\) 组测试数据。
每组数据中,每行包含 \(3\) 个正整数 \(a,p,b\)。
当 \(a=p=b=0\) 时,表示测试数据读入完全。
Output
对于每组数据,输出一行。
如果无解,输出“No Solution”(不含引号),否则输出最小自然数解。
Sample Input
5 58 33
2 4 3
0 0 0
Sample Output
9
No Solution
HINT
\(a,p,b≤10^9\)
Solution
当 \(\gcd(a,q)\not\mid b\) 且 \(b\ne 1\) 时无解。
a^{x-1}\frac{a}{(a,p)}\equiv \frac{b}{(a,p)}\pmod{\frac{p}{(a,p)}}
\]
注意这里不能写成 \(a^{x-1}\equiv b\times a^{-1}\pmod{\frac{p}{(a,p)}}\),因为此时 \(a\not\perp p\),没有逆元。
递归求解,直到 \(a\perp p\),此时式子的形式是
\]
从 \(0\dots m\) 枚举 \(j\),将 \(a^jb\) 的值存入 \(hash\) 表中,然后从 \(1\dots m\) 枚举 \(i\),若表中存在 \(k\times (a^m)^i\),则当前 \(i\times m-j\) 就是答案。
Code
#include <cmath>
#include <cstdio>
#include <tr1/unordered_map>
std::tr1::unordered_map<int,int> hash;
int read() {
int x = 0; char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x;
}
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
void exbsgs(int a, int b, int p) {
if (p == 1 || b == 1) { puts("0"); return; }
int t = gcd(a, p), k = 0, c = 1;
while (t > 1) {
if (b % t) { puts("No Solution"); return; }
b /= t, p /= t, c = 1LL * c * a / t % p, t = gcd(a, p), ++k;
if (b == c) { printf("%d\n", k); return; }
}
int m = ceil(sqrt(p)); hash.clear(), hash[b] = 0;
for (int i = 1; i <= m; ++i) t = 1LL * t * a % p, hash[1LL * t * b % p] = i;
a = t, t = 1LL * t * c % p;
for (int i = 1; i <= m; ++i, t = 1LL * t * a % p)
if (hash.count(t)) { printf("%d\n", i * m - hash[t] + k); return; }
puts("No Solution");
}
int main() {
int a = read(), p = read(), b = read();
while (a) exbsgs(a % p, b % p, p), a = read(), p = read(), b = read();
return 0;
}
[BZOJ 2480] [SPOJ 3105] Mod的更多相关文章
- 【BZOJ】【2480】【SPOJ 3105】Mod
扩展BSGS Orz zyf……然而他的题解对AC大神的题解作了引用……而坑爹的百度云……呵呵了... 扩展BSGS模板题 /************************************* ...
- 三种做法:BZOJ 2780: [Spoj]8093 Sevenk Love Oimaster
目录 题意 思路 AC_Code1 AC_Code2 AC_Code3 参考 @(bzoj 2780: [Spoj]8093 Sevenk Love Oimaster) 题意 链接:here 有\(n ...
- 「SPOJ 3105」Power Modulo Inverted
「SPOJ 3105」Power Modulo Inverted 传送门 题目大意: 求关于 \(x\) 的方程 \[a^x \equiv b \;(\mathrm{mod}\; p) \] 的最小自 ...
- BZOJ 2480 && 3239 && 2995 高次不定方程(高次同余方程)
链接 BZOJ 2480 虽然是个三倍经验题(2333),但是只有上面这道(BZOJ2480)有 p = 1 的加强数据,推荐大家做这道. 题解 这是一道BSGS(Baby Step Giant St ...
- BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论
BZOJ 2226 [Spoj 5971] LCMSum 这道题和上一道题十分类似. \[\begin{align*} \sum_{i = 1}^{n}\operatorname{LCM}(i, n) ...
- BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...
- BZOJ 2588: Spoj 10628. Count on a tree-可持久化线段树+LCA(点权)(树上的操作) 无语(为什么我的LCA的板子不对)
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 9280 Solved: 2421 ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- BZOJ 2588: Spoj 10628. Count on a tree 树上跑主席树
2588: Spoj 10628. Count on a tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/J ...
随机推荐
- 当input框输入到限定长度时,自动focus下一个input框
需求背景 需要输入一串15位的数字,但是要分为3个输入框,每个输入框限定长度5位,当删除当前输入框的内容时,focus到上一个输入框: 实现方法 var field = $('.phone-fiel ...
- 【代码笔记】Web-CSS-CSS Padding(填充)
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- wepy框架自定义组件编译报错not Found File XXX.wxss
今天在自己写wepy框架组件的时候编译后报错not Found File XXX.wxss 我去,当时我很难受啊,调用组件时结构和逻辑都正常,一写样式就原地爆炸 解决之路:1.先打开编译后的dist文 ...
- [python爬虫]Requests-BeautifulSoup-Re库方案--robots协议与Requests库实战
[根据北京理工大学嵩天老师“Python网络爬虫与信息提取”慕课课程编写 慕课链接:https://www.icourse163.org/learn/BIT-1001870001?tid=100223 ...
- 对象的使用处理,作用域的和ajax中this的理解
首先,封装类,理解清楚你需要用的哪几个变量,然后声明,然后在类里封装函数,其中,constructor就是存放初始变量的地方. 这里还是datatable的处理解决, constructor(tabl ...
- DVWA 黑客攻防演练(八)SQL 注入 SQL Injection
web 程序中离不开数据库,但到今天 SQL注入是一种常见的攻击手段.如今现在一些 orm 框架(Hibernate)或者一些 mapper 框架( iBatis)会对 SQL 有一个更友好的封装,使 ...
- SpringMVC从认识到细化了解
目录 SpringMVC的介绍 介绍: 执行流程 与strut2的对比 基本运行环境搭建 基础示例 控制器的编写 控制器创建方式: 请求映射问题: 获取请求提交的参数 通过域对象(request,re ...
- C++客户端访问WebService VS2008
VS2008及之后的版本已经不支持使用C++开发WEBService服务了,如果要在VS上开发WEBService,需要使用C#开发语言. 一.gSOAP简介 gSOAP编译工具提供了一个基于SOAP ...
- 在本地硬盘安装WinPE系统,实现UEFI引导,摆脱U盘
之前装系统一直用U盘装PE后再装系统,这次直接想把PE系统直接装在本地某个分区中,普通的PE制作工具只能直接装在一个硬盘里没法装在某个分区,百度发现没有一篇类似的文章,只能自己想办法了.目前的PE都支 ...
- linux备份还原命令
使用范围:1.可以作为系统还原点,还原到备份时的状态 2.系统完全损坏后无法启动,通过引导盘恢复 一.备份还原系统命令 方法一: 备份:tar cvpzf backup.tgz --exclude=/ ...