NLP related basic knowledge with deep learning methods
NLP related basic knowledge with deep learning methods
2017-06-22
First things first >>>>>>>>>>>>>>>>>>>>>>>> Some great blogs:
1. https://github.com/udacity/deep-learning/blob/master/embeddings/Skip-Gram_word2vec.ipynb
2. http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
3. http://www.thushv.com/natural_language_processing/word2vec-part-1-nlp-with-deep-learning-with-tensorflow-skip-gram/
4. https://github.com/udacity/deep-learning/blob/master/sentiment-rnn/Sentiment_RNN.ipynb
5. https://github.com/mchablani/deep-learning
Second >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Skip-Thought Vectors:
1. 无监督的表示模型,做 sentence-level,seq2seq model ... 该方法的能够 work 的原因在于下面的这幅图:
该方法的两个主要部分:encoder-decoder,不同的是 这里有两个 decoder,分别用于解码当前句子的前一句 和 后一句。网络的训练 loss 的定义就是两个 decoder 部分 loss 的叠加:
该方法的另一个问题在于:如何处理网络并未见过的 word ? 因为该网络的 encoder 部分可以将 文本 转化为 feature,但是可能有些 words 并未见过,如何编码这些 words 呢?本文利用 word2vector 的方法,将该机制中的 word 通过一个 映射函数 W 来进行转移,利用 L2 线性逻辑回归损失函数 来学习该 matrix W。
reference paper:
(1). http://papers.nips.cc/paper/5950-skip-thought-vectors.pdf
(2). blog: http://chuansong.me/n/478040352820
2.
NLP related basic knowledge with deep learning methods的更多相关文章
- 视觉中的深度学习方法CVPR 2012 Tutorial Deep Learning Methods for Vision
Deep Learning Methods for Vision CVPR 2012 Tutorial 9:00am-5:30pm, Sunday June 17th, Ballroom D (Fu ...
- 论文阅读:Face Recognition: From Traditional to Deep Learning Methods 《人脸识别综述:从传统方法到深度学习》
论文阅读:Face Recognition: From Traditional to Deep Learning Methods <人脸识别综述:从传统方法到深度学习> 一.引 ...
- [报告] Microsoft :Application of deep learning methods in speech enhancement
Application of deep learning methods in speech enhancement 语音增强中的深度学习应用 按: 本文是DNS,AEC,PLC等国际级语音竞赛的主办 ...
- Why are very few schools involved in deep learning research? Why are they still hooked on to Bayesian methods?
Why are very few schools involved in deep learning research? Why are they still hooked on to Bayesia ...
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- A Statistical View of Deep Learning (I): Recursive GLMs
A Statistical View of Deep Learning (I): Recursive GLMs Deep learningand the use of deep neural netw ...
随机推荐
- python: numpy--函数 shape用法
http://blog.csdn.net/u010758410/article/details/71554224 shape函数是numpy.core.fromnumeric中的函数,它的功能是查看矩 ...
- Presto 学习和使用笔记
1.presto 表连接查询的连接条件中不支持使用函数 比如下面的脚本在presto中运行会报错 select t1.period_start_date, t2.statistic_date from ...
- flask上下文全局变量,程序上下文、请求上下文、上下文钩子
Flask上下文 Flask中有两种上下文,程序上下文(application context)和请求上下文(request context) 当客户端发来请求时,请求上下文就登场了.请求上下文里包含 ...
- UVALive 3295 Counting Triangles
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- spark读取hbase形成RDD,存入hive或者spark_sql分析
object SaprkReadHbase { var total:Int = 0 def main(args: Array[String]) { val spark = SparkSession . ...
- 柳暗花明又一村的———for循环
学习过了do while循环和while循环后,我们终于剩下了循环结构重的最后一个-------for循环 本人认为for循环相比于do while ,while而言.好学一点下面就是我对for循环的 ...
- shell 多行注释 块注释
转自 https://www.cnblogs.com/emanlee/p/3749911.html 1 : ' 被注释的多行内容 ' 2 :<<eof 被注释的多行内容 eof 3 :&l ...
- ES6知识整理(9)--class的基本语法
(总结完知识点,出去滑板刷街) promise的catch 上一节promise中漏了一个知识点: promise对象可以使用catch来避免每个then中都加error判断,让错误时都进到catch ...
- mybatis之关联映射
###mybatis使用之一对一关联映射 1)分析并画ER图.(特别是一对一.一对多.多对多的情况) 2)启动终端数据库,并建库建表,在表中插入值和字段,并查看结果.(后期把navicat用上) 3) ...
- Golang生成区间随机整数
package main import ( "fmt" "math/rand" "time" ) func main() { rand.Se ...