布隆过滤器的实现方法1:自己实现

参考 http://www.cnblogs.com/naive/p/5815433.html

bllomFilter两个参数分别代表,布隆过滤器的大小和hash函数的个数

#coding:utf-8
#!/usr/bin/env python from bitarray import bitarray
# 3rd party
import mmh3
import scrapy
from BeautifulSoup import BeautifulSoup as BS
import os
ls = os.linesep class BloomFilter(set): def __init__(self, size, hash_count):
super(BloomFilter, self).__init__()
self.bit_array = bitarray(size)
self.bit_array.setall(0)
self.size = size
self.hash_count = hash_count def __len__(self):
return self.size def __iter__(self):
return iter(self.bit_array) def add(self, item):
for ii in range(self.hash_count):
index = mmh3.hash(item, ii) % self.size
self.bit_array[index] = 1 return self def __contains__(self, item):
out = True
for ii in range(self.hash_count):
index = mmh3.hash(item, ii) % self.size
if self.bit_array[index] == 0:
out = False return out class DmozSpider(scrapy.Spider):
name = "baidu"
allowed_domains = ["baidu.com"]
start_urls = [
"http://baike.baidu.com/item/%E7%BA%B3%E5%85%B0%E6%98%8E%E7%8F%A0"
] def parse(self, response): # fname = "/media/common/娱乐/Electronic_Design/Coding/Python/Scrapy/tutorial/tutorial/spiders/temp"
#
# html = response.xpath('//html').extract()[0]
# fobj = open(fname, 'w')
# fobj.writelines(html.encode('utf-8'))
# fobj.close() bloom = BloomFilter(1000, 10)
animals = ['dog', 'cat', 'giraffe', 'fly', 'mosquito', 'horse', 'eagle',
'bird', 'bison', 'boar', 'butterfly', 'ant', 'anaconda', 'bear',
'chicken', 'dolphin', 'donkey', 'crow', 'crocodile']
# First insertion of animals into the bloom filter
for animal in animals:
bloom.add(animal) # Membership existence for already inserted animals
# There should not be any false negatives
for animal in animals:
if animal in bloom:
print('{} is in bloom filter as expected'.format(animal))
else:
print('Something is terribly went wrong for {}'.format(animal))
print('FALSE NEGATIVE!') # Membership existence for not inserted animals
# There could be false positives
other_animals = ['badger', 'cow', 'pig', 'sheep', 'bee', 'wolf', 'fox',
'whale', 'shark', 'fish', 'turkey', 'duck', 'dove',
'deer', 'elephant', 'frog', 'falcon', 'goat', 'gorilla',
'hawk']
for other_animal in other_animals:
if other_animal in bloom:
print('{} is not in the bloom, but a false positive'.format(other_animal))
else:
print('{} is not in the bloom filter as expected'.format(other_animal))

布隆过滤器的实现方法2:使用pybloom

参考 http://www.jianshu.com/p/f57187e2b5b9

#coding:utf-8
#!/usr/bin/env python from pybloom import BloomFilter import scrapy
from BeautifulSoup import BeautifulSoup as BS
import os
ls = os.linesep class DmozSpider(scrapy.Spider):
name = "baidu"
allowed_domains = ["baidu.com"]
start_urls = [
"http://baike.baidu.com/item/%E7%BA%B3%E5%85%B0%E6%98%8E%E7%8F%A0"
] def parse(self, response): # fname = "/media/common/娱乐/Electronic_Design/Coding/Python/Scrapy/tutorial/tutorial/spiders/temp"
#
# html = response.xpath('//html').extract()[0]
# fobj = open(fname, 'w')
# fobj.writelines(html.encode('utf-8'))
# fobj.close() # bloom = BloomFilter(100, 10)
bloom = BloomFilter(1000, 0.001)
animals = ['dog', 'cat', 'giraffe', 'fly', 'mosquito', 'horse', 'eagle',
'bird', 'bison', 'boar', 'butterfly', 'ant', 'anaconda', 'bear',
'chicken', 'dolphin', 'donkey', 'crow', 'crocodile']
# First insertion of animals into the bloom filter
for animal in animals:
bloom.add(animal) # Membership existence for already inserted animals
# There should not be any false negatives
for animal in animals:
if animal in bloom:
print('{} is in bloom filter as expected'.format(animal))
else:
print('Something is terribly went wrong for {}'.format(animal))
print('FALSE NEGATIVE!') # Membership existence for not inserted animals
# There could be false positives
other_animals = ['badger', 'cow', 'pig', 'sheep', 'bee', 'wolf', 'fox',
'whale', 'shark', 'fish', 'turkey', 'duck', 'dove',
'deer', 'elephant', 'frog', 'falcon', 'goat', 'gorilla',
'hawk']
for other_animal in other_animals:
if other_animal in bloom:
print('{} is not in the bloom, but a false positive'.format(other_animal))
else:
print('{} is not in the bloom filter as expected'.format(other_animal))

输出

dog is in bloom filter as expected
cat is in bloom filter as expected
giraffe is in bloom filter as expected
fly is in bloom filter as expected
mosquito is in bloom filter as expected
horse is in bloom filter as expected
eagle is in bloom filter as expected
bird is in bloom filter as expected
bison is in bloom filter as expected
boar is in bloom filter as expected
butterfly is in bloom filter as expected
ant is in bloom filter as expected
anaconda is in bloom filter as expected
bear is in bloom filter as expected
chicken is in bloom filter as expected
dolphin is in bloom filter as expected
donkey is in bloom filter as expected
crow is in bloom filter as expected
crocodile is in bloom filter as expected
badger is not in the bloom filter as expected
cow is not in the bloom filter as expected
pig is not in the bloom filter as expected
sheep is not in the bloom filter as expected
bee is not in the bloom filter as expected
wolf is not in the bloom filter as expected
fox is not in the bloom filter as expected
whale is not in the bloom filter as expected
shark is not in the bloom filter as expected
fish is not in the bloom filter as expected
turkey is not in the bloom filter as expected
duck is not in the bloom filter as expected
dove is not in the bloom filter as expected
deer is not in the bloom filter as expected
elephant is not in the bloom filter as expected
frog is not in the bloom filter as expected
falcon is not in the bloom filter as expected
goat is not in the bloom filter as expected
gorilla is not in the bloom filter as expected
hawk is not in the bloom filter as expected

Python爬虫学习——布隆过滤器的更多相关文章

  1. python爬虫学习(1) —— 从urllib说起

    0. 前言 如果你从来没有接触过爬虫,刚开始的时候可能会有些许吃力 因为我不会从头到尾把所有知识点都说一遍,很多文章主要是记录我自己写的一些爬虫 所以建议先学习一下cuiqingcai大神的 Pyth ...

  2. python爬虫学习 —— 总目录

    开篇 作为一个C党,接触python之后学习了爬虫. 和AC算法题的快感类似,从网络上爬取各种数据也很有意思. 准备写一系列文章,整理一下学习历程,也给后来者提供一点便利. 我是目录 听说你叫爬虫 - ...

  3. Python爬虫学习:三、爬虫的基本操作流程

    本文是博主原创随笔,转载时请注明出处Maple2cat|Python爬虫学习:三.爬虫的基本操作与流程 一般我们使用Python爬虫都是希望实现一套完整的功能,如下: 1.爬虫目标数据.信息: 2.将 ...

  4. Python爬虫学习:四、headers和data的获取

    之前在学习爬虫时,偶尔会遇到一些问题是有些网站需要登录后才能爬取内容,有的网站会识别是否是由浏览器发出的请求. 一.headers的获取 就以博客园的首页为例:http://www.cnblogs.c ...

  5. Python爬虫学习:二、爬虫的初步尝试

    我使用的编辑器是IDLE,版本为Python2.7.11,Windows平台. 本文是博主原创随笔,转载时请注明出处Maple2cat|Python爬虫学习:二.爬虫的初步尝试 1.尝试抓取指定网页 ...

  6. 《Python爬虫学习系列教程》学习笔记

    http://cuiqingcai.com/1052.html 大家好哈,我呢最近在学习Python爬虫,感觉非常有意思,真的让生活可以方便很多.学习过程中我把一些学习的笔记总结下来,还记录了一些自己 ...

  7. python爬虫学习视频资料免费送,用起来非常666

    当我们浏览网页的时候,经常会看到像下面这些好看的图片,你是否想把这些图片保存下载下来. 我们最常规的做法就是通过鼠标右键,选择另存为.但有些图片点击鼠标右键的时候并没有另存为选项,或者你可以通过截图工 ...

  8. python爬虫学习笔记(一)——环境配置(windows系统)

    在进行python爬虫学习前,需要进行如下准备工作: python3+pip官方配置 1.Anaconda(推荐,包括python和相关库)   [推荐地址:清华镜像] https://mirrors ...

  9. [转]《Python爬虫学习系列教程》

    <Python爬虫学习系列教程>学习笔记 http://cuiqingcai.com/1052.html 大家好哈,我呢最近在学习Python爬虫,感觉非常有意思,真的让生活可以方便很多. ...

随机推荐

  1. 洛谷.3391.文艺平衡树(fhq Traep)

    题目链接 //注意反转时先分裂r,因为l,r是针对整棵树的排名 #include<cstdio> #include<cctype> #include<algorithm& ...

  2. 潭州课堂25班:Ph201805201 第十五课 迭代器,生成器 (课堂笔记)

    推导表达式 li1 = list() for i in range(10): # 迭代循环内容 li1.append(i) print( li1 ) ---->>> [0, 1, 2 ...

  3. exce中42093和日期之间的关系

    在EXECEL中数字0 代表日期 1900-1-0 ,即这个日期为起始日期,算是第0天数字1 代表日期 1900-1-1 ,即第一天数字2 代表日期 1900-1-2 ,即第二天......数字415 ...

  4. db2存储过程动态sql被截断

    编写存储过程,使用动态sql时,调试时发现变量赋值后被截断. 关键代码如下: 实现的效果是先把上下游做对比的sql语句和相关参数存入RKDM_DATA_VOID_RULE, 执行存储过程后把两个sql ...

  5. Python:内置函数

    Python所有的内置函数     Built-in Functions     abs() divmod() input() open() staticmethod() all() enumerat ...

  6. Github和Git上fork指南

    现在有这样一种情形:有一个叫做Joe的程序猿写了一个游戏程序,而你可能要去改进它.并且Joe将他的代码放在了GitHub仓库上.下面是你要做的事情: fork并且更新GitHub仓库的图表演示 For ...

  7. 【转】Intellij IDEA调试功能

    http://www.cnblogs.com/winner-0715/p/5422952.html 先编译好要调试的程序.1.设置断点

  8. bayer格式

    1 图像bayer格式介绍 bayer格式图片是伊士曼·柯达公司科学家Bryce Bayer发明的,Bryce Bayer所发明的拜耳阵列被广泛运用数字图像. 对于彩色图像,需要采集多种最基本的颜色, ...

  9. C#利用QRCoder生产二维码

    系统使用.NET4.5.1 代码如下: using System; using System.Collections.Generic; using System.Linq; using System. ...

  10. 亿级 Web 系统搭建:单机到分布式集群

    本文内容 Web 负载均衡 HTTP 重定向 反向代理 IP 负载均衡 DNS 负载均衡 Web 系统缓存机制的建立和优化 MySQL 数据库内部缓存 搭建多台 MySQL 数据库 MySQL 数据库 ...