布隆过滤器的实现方法1:自己实现

参考 http://www.cnblogs.com/naive/p/5815433.html

bllomFilter两个参数分别代表,布隆过滤器的大小和hash函数的个数

#coding:utf-8
#!/usr/bin/env python from bitarray import bitarray
# 3rd party
import mmh3
import scrapy
from BeautifulSoup import BeautifulSoup as BS
import os
ls = os.linesep class BloomFilter(set): def __init__(self, size, hash_count):
super(BloomFilter, self).__init__()
self.bit_array = bitarray(size)
self.bit_array.setall(0)
self.size = size
self.hash_count = hash_count def __len__(self):
return self.size def __iter__(self):
return iter(self.bit_array) def add(self, item):
for ii in range(self.hash_count):
index = mmh3.hash(item, ii) % self.size
self.bit_array[index] = 1 return self def __contains__(self, item):
out = True
for ii in range(self.hash_count):
index = mmh3.hash(item, ii) % self.size
if self.bit_array[index] == 0:
out = False return out class DmozSpider(scrapy.Spider):
name = "baidu"
allowed_domains = ["baidu.com"]
start_urls = [
"http://baike.baidu.com/item/%E7%BA%B3%E5%85%B0%E6%98%8E%E7%8F%A0"
] def parse(self, response): # fname = "/media/common/娱乐/Electronic_Design/Coding/Python/Scrapy/tutorial/tutorial/spiders/temp"
#
# html = response.xpath('//html').extract()[0]
# fobj = open(fname, 'w')
# fobj.writelines(html.encode('utf-8'))
# fobj.close() bloom = BloomFilter(1000, 10)
animals = ['dog', 'cat', 'giraffe', 'fly', 'mosquito', 'horse', 'eagle',
'bird', 'bison', 'boar', 'butterfly', 'ant', 'anaconda', 'bear',
'chicken', 'dolphin', 'donkey', 'crow', 'crocodile']
# First insertion of animals into the bloom filter
for animal in animals:
bloom.add(animal) # Membership existence for already inserted animals
# There should not be any false negatives
for animal in animals:
if animal in bloom:
print('{} is in bloom filter as expected'.format(animal))
else:
print('Something is terribly went wrong for {}'.format(animal))
print('FALSE NEGATIVE!') # Membership existence for not inserted animals
# There could be false positives
other_animals = ['badger', 'cow', 'pig', 'sheep', 'bee', 'wolf', 'fox',
'whale', 'shark', 'fish', 'turkey', 'duck', 'dove',
'deer', 'elephant', 'frog', 'falcon', 'goat', 'gorilla',
'hawk']
for other_animal in other_animals:
if other_animal in bloom:
print('{} is not in the bloom, but a false positive'.format(other_animal))
else:
print('{} is not in the bloom filter as expected'.format(other_animal))

布隆过滤器的实现方法2:使用pybloom

参考 http://www.jianshu.com/p/f57187e2b5b9

#coding:utf-8
#!/usr/bin/env python from pybloom import BloomFilter import scrapy
from BeautifulSoup import BeautifulSoup as BS
import os
ls = os.linesep class DmozSpider(scrapy.Spider):
name = "baidu"
allowed_domains = ["baidu.com"]
start_urls = [
"http://baike.baidu.com/item/%E7%BA%B3%E5%85%B0%E6%98%8E%E7%8F%A0"
] def parse(self, response): # fname = "/media/common/娱乐/Electronic_Design/Coding/Python/Scrapy/tutorial/tutorial/spiders/temp"
#
# html = response.xpath('//html').extract()[0]
# fobj = open(fname, 'w')
# fobj.writelines(html.encode('utf-8'))
# fobj.close() # bloom = BloomFilter(100, 10)
bloom = BloomFilter(1000, 0.001)
animals = ['dog', 'cat', 'giraffe', 'fly', 'mosquito', 'horse', 'eagle',
'bird', 'bison', 'boar', 'butterfly', 'ant', 'anaconda', 'bear',
'chicken', 'dolphin', 'donkey', 'crow', 'crocodile']
# First insertion of animals into the bloom filter
for animal in animals:
bloom.add(animal) # Membership existence for already inserted animals
# There should not be any false negatives
for animal in animals:
if animal in bloom:
print('{} is in bloom filter as expected'.format(animal))
else:
print('Something is terribly went wrong for {}'.format(animal))
print('FALSE NEGATIVE!') # Membership existence for not inserted animals
# There could be false positives
other_animals = ['badger', 'cow', 'pig', 'sheep', 'bee', 'wolf', 'fox',
'whale', 'shark', 'fish', 'turkey', 'duck', 'dove',
'deer', 'elephant', 'frog', 'falcon', 'goat', 'gorilla',
'hawk']
for other_animal in other_animals:
if other_animal in bloom:
print('{} is not in the bloom, but a false positive'.format(other_animal))
else:
print('{} is not in the bloom filter as expected'.format(other_animal))

输出

dog is in bloom filter as expected
cat is in bloom filter as expected
giraffe is in bloom filter as expected
fly is in bloom filter as expected
mosquito is in bloom filter as expected
horse is in bloom filter as expected
eagle is in bloom filter as expected
bird is in bloom filter as expected
bison is in bloom filter as expected
boar is in bloom filter as expected
butterfly is in bloom filter as expected
ant is in bloom filter as expected
anaconda is in bloom filter as expected
bear is in bloom filter as expected
chicken is in bloom filter as expected
dolphin is in bloom filter as expected
donkey is in bloom filter as expected
crow is in bloom filter as expected
crocodile is in bloom filter as expected
badger is not in the bloom filter as expected
cow is not in the bloom filter as expected
pig is not in the bloom filter as expected
sheep is not in the bloom filter as expected
bee is not in the bloom filter as expected
wolf is not in the bloom filter as expected
fox is not in the bloom filter as expected
whale is not in the bloom filter as expected
shark is not in the bloom filter as expected
fish is not in the bloom filter as expected
turkey is not in the bloom filter as expected
duck is not in the bloom filter as expected
dove is not in the bloom filter as expected
deer is not in the bloom filter as expected
elephant is not in the bloom filter as expected
frog is not in the bloom filter as expected
falcon is not in the bloom filter as expected
goat is not in the bloom filter as expected
gorilla is not in the bloom filter as expected
hawk is not in the bloom filter as expected

Python爬虫学习——布隆过滤器的更多相关文章

  1. python爬虫学习(1) —— 从urllib说起

    0. 前言 如果你从来没有接触过爬虫,刚开始的时候可能会有些许吃力 因为我不会从头到尾把所有知识点都说一遍,很多文章主要是记录我自己写的一些爬虫 所以建议先学习一下cuiqingcai大神的 Pyth ...

  2. python爬虫学习 —— 总目录

    开篇 作为一个C党,接触python之后学习了爬虫. 和AC算法题的快感类似,从网络上爬取各种数据也很有意思. 准备写一系列文章,整理一下学习历程,也给后来者提供一点便利. 我是目录 听说你叫爬虫 - ...

  3. Python爬虫学习:三、爬虫的基本操作流程

    本文是博主原创随笔,转载时请注明出处Maple2cat|Python爬虫学习:三.爬虫的基本操作与流程 一般我们使用Python爬虫都是希望实现一套完整的功能,如下: 1.爬虫目标数据.信息: 2.将 ...

  4. Python爬虫学习:四、headers和data的获取

    之前在学习爬虫时,偶尔会遇到一些问题是有些网站需要登录后才能爬取内容,有的网站会识别是否是由浏览器发出的请求. 一.headers的获取 就以博客园的首页为例:http://www.cnblogs.c ...

  5. Python爬虫学习:二、爬虫的初步尝试

    我使用的编辑器是IDLE,版本为Python2.7.11,Windows平台. 本文是博主原创随笔,转载时请注明出处Maple2cat|Python爬虫学习:二.爬虫的初步尝试 1.尝试抓取指定网页 ...

  6. 《Python爬虫学习系列教程》学习笔记

    http://cuiqingcai.com/1052.html 大家好哈,我呢最近在学习Python爬虫,感觉非常有意思,真的让生活可以方便很多.学习过程中我把一些学习的笔记总结下来,还记录了一些自己 ...

  7. python爬虫学习视频资料免费送,用起来非常666

    当我们浏览网页的时候,经常会看到像下面这些好看的图片,你是否想把这些图片保存下载下来. 我们最常规的做法就是通过鼠标右键,选择另存为.但有些图片点击鼠标右键的时候并没有另存为选项,或者你可以通过截图工 ...

  8. python爬虫学习笔记(一)——环境配置(windows系统)

    在进行python爬虫学习前,需要进行如下准备工作: python3+pip官方配置 1.Anaconda(推荐,包括python和相关库)   [推荐地址:清华镜像] https://mirrors ...

  9. [转]《Python爬虫学习系列教程》

    <Python爬虫学习系列教程>学习笔记 http://cuiqingcai.com/1052.html 大家好哈,我呢最近在学习Python爬虫,感觉非常有意思,真的让生活可以方便很多. ...

随机推荐

  1. HDU.2829.Lawrence(DP 斜率优化)

    题目链接 \(Description\) 给定一个\(n\)个数的序列,最多将序列分为\(m+1\)段,每段的价值是这段中所有数两两相乘的和.求最小总价值. \(Solution\) 写到这突然懒得写 ...

  2. Python解释数学系列——分位数Quantile

    跳转到我的博客 1. 分位数计算案例与Python代码 案例1 Ex1: Given a data = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36],求Q1, ...

  3. [BZOJ2238]Mst

    [BZOJ2238]Mst 题目大意: 给你一个\(n(n\le50000)\)个点,\(m(m\le10^5)\)条边的无向带权图.\(q(q\le10^5)\)次询问,每次询问去掉一条边后图能否连 ...

  4. git 删除分支 远程 && 本地

    //查看远程分支 git branch -a //删除远程分支 git branch -r -d origin/branch-name git push origin :branch-name// 或 ...

  5. AJAX传输——以XML文件传输为例

    此文档解决以下问题: 一.responseText获取数据 1.AJAX异步传输,get请求方式/post请求方式,输出全部xml数据 二.responseXML获取数据 2.AJAX异步传输,get ...

  6. C#轻量级日志监控器EasyLogMonitor

    一.课程介绍 本次分享课程属于<C#高级编程实战技能开发宝典课程系列>中的一部分,阿笨后续会计划将实际项目中的一些比较实用的关于C#高级编程的技巧分享出来给大家进行学习,不断的收集.整理和 ...

  7. Unity3D游戏制作(三)——移动平台上的角色阴影制作

    本系列文章由 Amazonzx 编写,欢迎转载,转载请注明出处. http://blog.csdn.net/amazonzx/article/details/7973740 本文将重点介绍两种目前在移 ...

  8. [C#]手把手教你打造Socket的TCP通讯连接(一)

    本文章将讲解基于TCP连接的Socket通讯,使用Socket异步功能,并且无粘包现象,通过事件驱动使用. 在编写Socket代码之前,我们得要定义一下Socket的基本功能. 作为一个TCP连接,不 ...

  9. 自己训练SVM分类器进行HOG行人检测

    正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体. 负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不 ...

  10. GitHub超全机器学习工程师成长路线图,开源两日收获3700+Star!【转】

    作者 | 琥珀 出品 | AI科技大本营(ID:rgznai100) 近日,一个在 GitHub 上开源即收获了 3700+ Star 的项目,引起了营长的注意.据介绍,该项目以 TensorFlow ...