poj-2369-置换
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc.
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us)
It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing:
It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P.
The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."
Input
Output
Sample Input
5
4 1 5 2 3
Sample Output
6
给出一个置换A,求使得A^k=A成立的最小的k值。
先把A分解成若干个循环的乘积,A=p1*p2*...*pm ,答案就是lcm(|p1|,|p2|,,,,|pm|);
每个循环只要执行|p1|次就会回到初始状态,所以找到一个最小公倍数使得所有循环都回到初始状态。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<set>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long
#define PI acos(-1.0)
int gcd(int a,int b){return b==?a:gcd(b,a%b);}
int lcm(int a,int b){return a*b/gcd(a,b);}
int a[];
bool v[];
int main()
{
int T,n,m,k,i,j,d;
while(scanf("%d",&n)!=EOF){
int ans=;
for(i=;i<=n;++i){
scanf("%d",&a[i]);
}
memset(v,,sizeof(v));
for(i=;i<=n;++i){
if(!v[i]){
int tmp=;
j=i;
while(!v[j]){
tmp++;
v[j]=;
j=a[j];
}
ans=lcm(ans,tmp);
}
}
cout<<ans<<endl;
}
return ;
}
poj-2369-置换的更多相关文章
- poj 2369 Permutations 置换
题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...
- poj 2369 Permutations (置换入门)
题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...
- POJ 2369 Permutations (置换的秩P^k = I)
题意 给定一个置换形式如,问经过几次置换可以变为恒等置换 思路 就是求k使得Pk = I. 我们知道一个置换可以表示为几个轮换的乘积,那么k就是所有轮换长度的最小公倍数. 把一个置换转换成轮换的方法也 ...
- poj 2369 Permutations - 数论
We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Les ...
- poj 3270 置换
poj 置换的应用 黑书原题P248 /** 题意: 给定序列, 将其按升序排列, 每次交换的代价是两个数之和, 问代价最小是多少 思路:1.对于同一个循环节之内的,肯定是最小的与别的交换代价最小 2 ...
- POJ 2369 Permutations(置换群概念题)
Description We remind that the permutation of some final set is a one-to-one mapping of the set onto ...
- POJ 2369 Permutations
傻逼图论. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...
- poj 2369 Permutations 更换水称号
寻找循环节求lcm够了,如果答案是12345应该输出1.这是下一个洞. #include<iostream> #include<cstdio> #include<cstr ...
- poj 2369(置换群)
Permutations Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3041 Accepted: 1641 Desc ...
- poj 3270(置换 循环)
经典的题目,主要还是考思维,之前在想的时候只想到了在一个循环中,每次都用最小的来交换,结果忽略了一种情况,还可以选所有数中最小的来交换一个循环. Cow Sorting Time Limit: 200 ...
随机推荐
- (转) The Incredible PyTorch
转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is ...
- C++笔记(2017/2/9)
this指针 this指针作用就是指向成员函数所作用的对象. 非静态成员函数中可以直接使用this来代表指向该函数作用的对象的指针. 静态成员函数中不能使用this指针. 静态成员 static 定义 ...
- HDU 5649 DZY Loves Sorting(二分答案+线段树/线段树合并+线段树分割)
题意 一个 \(1\) 到 \(n\) 的全排列,\(m\) 种操作,每次将一段区间 \([l,r]\) 按升序或降序排列,求 \(m\) 次操作后的第 \(k\) 位. \(1 \leq n \le ...
- 2、iptables基本应用
iptables:规则管理工具 添加.修改.删除.显示等: 规则和链有计数器: pkts: 由规则或链所匹配到的报文的个数: bytes:由规则或链匹配到的所有报文大小之和: iptables命令: ...
- 【Python】【有趣的模块】【sys&time&os】
[模块] sys.path.append('C:/Users/wangxue1/PycharmProjects/selenium2TestOne') 然后就可以直接import 这个路径下的模块了 [ ...
- django 应用中获取访问者ip地址
通常访问者的IP就在其中,所以我们可以用下列方法获取用户的真实IP: #X-Forwarded-For:简称XFF头,它代表客户端,也就是HTTP的请求端真实的IP,只有在通过了HTTP 代理或者负载 ...
- [osg][原]osg的坐标系:使用右手法则Y轴向前、X向、右Z向上。camare的默认姿态:向下看(Z轴负向),头向前(Y轴正向)
参考:http://blog.csdn.net/tmljs1988/article/details/7561887 图中上半边为opengl坐标系,下半边的osg坐标系: osg::Camare的默认 ...
- PSFTP用法
PSFTP是PuTTY SFTP客户端,用于本地与服务器间安全传输文件(使用SSH连接). 1. 启动PSFTP 在Windows命令提示符中输入 set PATH=C:/PSFTP.exe所在路径; ...
- Lua和C++交互 学习记录之四:全局table交互
主要内容转载自:子龙山人博客(强烈建议去子龙山人博客完全学习一遍) 部分内容查阅自:<Lua 5.3 参考手册>中文版 译者 云风 制作 Kavcc vs2013+lua-5.3.3 1 ...
- vue 上传单个图片自定义增加progress改良用户体验
<el-tab-pane label="开发商logo" name="first" style="position: relative;&quo ...