http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1275

题意:

思路:

固定某个端点,然后去寻找满足能满足要求的最大区间,这里就用一下单调队列,一个维护最大值,一个维护最小值。

比如说,现在左端点固定为i,右端点一直往前找,直到此时的最大值-最小值>k了,此时退出,假设此时为j,那么i~j-1就是一个符合要求的最大区间。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = +; int n, k;
ll ans;
int a[maxn];
deque<int> qmin,qmax; int main()
{
//freopen("in.txt","r",stdin);
while(~scanf("%d%d",&n,&k))
{
ans=;
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=,j=;i<=n;i++)
{
while(j<=n)
{
while(!qmin.empty() && a[qmin.back()]>=a[j]) qmin.pop_back();
qmin.push_back(j);
while(!qmax.empty() && a[qmax.back()]<=a[j]) qmax.pop_back();
qmax.push_back(j);
if(a[qmax.front()]-a[qmin.front()]<=k) j++;
else break;
}
ans+=j-i;
if(qmin.front()==i) qmin.pop_front();
if(qmax.front()==i) qmax.pop_front();
}
printf("%lld\n",ans);
}
return ;
}

51nod 1275 连续字段的差异(单调队列)的更多相关文章

  1. 51nod 1275 连续子段的差异(twopointer+单调队列)

    对于每一个i找到最近的j满足最大值-最小值>K,对答案的贡献为j-i,用单调队列维护最值即可 #include<iostream> #include<cstdlib> # ...

  2. 51nod 1275 连续子段的差异

    题目看这里 若[i,j]符合要求,那么[i,j]内的任何连续的子段都是符合要求的.我们可以枚举i,找到能合格的最远的j,然后ans+=(j-i+1). 那么问题就转换成了:在固定i的情况下,如何判断j ...

  3. 51nod 1821 最优集合(思维+单调队列)

    题意:一个集合S的优美值定义为:最大的x,满足对于任意i∈[1,x],都存在一个S的子集S',使得S'中元素之和为i. 给定n个集合,对于每一次询问,指定一个集合S1和一个集合S2,以及一个数k,要求 ...

  4. POJ3162 Walking Race(树形DP+尺取法+单调队列)

    题目大概是给一棵n个结点边带权的树,记结点i到其他结点最远距离为d[i],问d数组构成的这个序列中满足其中最大值与最小值的差不超过m的连续子序列最长是多长. 各个结点到其他结点的最远距离可以用树形DP ...

  5. hdu 4374 单调队列

    求一个最大k连续的子序列和   单调队列 #include<stdio.h> #include<string.h> #include<iostream> using ...

  6. 51nod 1050 循环数组最大子段和 单调队列优化DP

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1050 这个呢,这个题之前 求一遍最大值  然后求一遍最小值 ...

  7. 51nod 1952 栈(单调队列)

    用deque实时维护栈的情况. 数加入栈顶部,删掉栈顶部的数,相当于加入一个数,删掉最早出现的数,每次求最大值,这个直接记录一下就好了. 数加入栈底部,删掉栈顶部的数,相当于加入一个数,删掉最晚出现的 ...

  8. 单调队列&单调栈归纳

    单调队列 求长度为M的区间内的最大(小)值 单调队列的基本操作,也就是经典的滑动窗口问题. 求长度为M的区间内最大值和最小值的最大差值 两个单调队列,求出长度为M的区间最大最小值的数组,分别求最大最小 ...

  9. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

随机推荐

  1. 20165316 技能学习心得与c语言学习

    20165316 技能学习心得与c语言学习 一.技能学习经验 我会打乒乓球,在中国,我只能说我"会"打,至于"比大多数人更好"我不敢断言,因为我无时无刻不感受到 ...

  2. ESB(Enterprise Service Bus)企业服务总线介绍

    ESB(Enterprise Service Bus)企业服务总线介绍 ESB全称为Enterprise Service Bus,即企业服务总线.它是传统中间件技术与XML.Web服务等技术结合的产物 ...

  3. VPS高性能虚拟机KVM详解

    1. KVM 介绍 1.0 虚拟化简史 其中,KVM 全称是 基于内核的虚拟机(Kernel-based Virtual Machine),它是Linux 的一个内核模块,该内核模块使得 Linux ...

  4. 前端框架VUE----计算属性和侦听器

    一.计算属性 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护.例如: <div> {{ message.split('').rev ...

  5. python-数据分析与展示(Numpy、matplotlib、pandas)---2

    笔记内容整理自mooc上北京理工大学嵩天老师python系列课程数据分析与展示,本人小白一枚,如有不对,多加指正 1.python自带的图像库PIL 1.1常用API  Image.open()    ...

  6. Linux查看机器和硬盘的SN

    查看硬件RAID中某块硬盘SN # sas 口: [root@ ~]$ smartctl -a /dev/sda -d megaraid,n *** Serial number: 6RJ974SR * ...

  7. P1382 楼房

    P1382 楼房 每个矩形拆成2个坐标按$x$轴排序,蓝后$multiset$维护最高值. #include<iostream> #include<cstring> #incl ...

  8. mysql添加Federated引擎问题

    现在我有这么一个需求, 就是有两个项目, 一个叫项目A,一个项目B, 由于A的用户表和B的用户表是要实现一样的. 例如: 我在A项目中注册了,要实现在B项目中也能登录, 当用到B的时候, 由于B数据库 ...

  9. 【Python020--内嵌函数和闭包】

    一.内嵌函数&闭包 1.最好是访问全局变量而不是修改全局变量,修改全局变量Python会内部屏蔽(修改后,函数会内部创建一个和全局变量一抹一样的变量) >>> count = ...

  10. 【转】java提高篇之理解java的三大特性——多态

    面向对象编程有三大特性:封装.继承.多态. 封装隐藏了类的内部实现机制,可以在不影响使用的情况下改变类的内部结构,同时也保护了数据.对外界而已它的内部细节是隐藏的,暴露给外界的只是它的访问方法. 继承 ...