http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1275

题意:

思路:

固定某个端点,然后去寻找满足能满足要求的最大区间,这里就用一下单调队列,一个维护最大值,一个维护最小值。

比如说,现在左端点固定为i,右端点一直往前找,直到此时的最大值-最小值>k了,此时退出,假设此时为j,那么i~j-1就是一个符合要求的最大区间。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = +; int n, k;
ll ans;
int a[maxn];
deque<int> qmin,qmax; int main()
{
//freopen("in.txt","r",stdin);
while(~scanf("%d%d",&n,&k))
{
ans=;
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=,j=;i<=n;i++)
{
while(j<=n)
{
while(!qmin.empty() && a[qmin.back()]>=a[j]) qmin.pop_back();
qmin.push_back(j);
while(!qmax.empty() && a[qmax.back()]<=a[j]) qmax.pop_back();
qmax.push_back(j);
if(a[qmax.front()]-a[qmin.front()]<=k) j++;
else break;
}
ans+=j-i;
if(qmin.front()==i) qmin.pop_front();
if(qmax.front()==i) qmax.pop_front();
}
printf("%lld\n",ans);
}
return ;
}

51nod 1275 连续字段的差异(单调队列)的更多相关文章

  1. 51nod 1275 连续子段的差异(twopointer+单调队列)

    对于每一个i找到最近的j满足最大值-最小值>K,对答案的贡献为j-i,用单调队列维护最值即可 #include<iostream> #include<cstdlib> # ...

  2. 51nod 1275 连续子段的差异

    题目看这里 若[i,j]符合要求,那么[i,j]内的任何连续的子段都是符合要求的.我们可以枚举i,找到能合格的最远的j,然后ans+=(j-i+1). 那么问题就转换成了:在固定i的情况下,如何判断j ...

  3. 51nod 1821 最优集合(思维+单调队列)

    题意:一个集合S的优美值定义为:最大的x,满足对于任意i∈[1,x],都存在一个S的子集S',使得S'中元素之和为i. 给定n个集合,对于每一次询问,指定一个集合S1和一个集合S2,以及一个数k,要求 ...

  4. POJ3162 Walking Race(树形DP+尺取法+单调队列)

    题目大概是给一棵n个结点边带权的树,记结点i到其他结点最远距离为d[i],问d数组构成的这个序列中满足其中最大值与最小值的差不超过m的连续子序列最长是多长. 各个结点到其他结点的最远距离可以用树形DP ...

  5. hdu 4374 单调队列

    求一个最大k连续的子序列和   单调队列 #include<stdio.h> #include<string.h> #include<iostream> using ...

  6. 51nod 1050 循环数组最大子段和 单调队列优化DP

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1050 这个呢,这个题之前 求一遍最大值  然后求一遍最小值 ...

  7. 51nod 1952 栈(单调队列)

    用deque实时维护栈的情况. 数加入栈顶部,删掉栈顶部的数,相当于加入一个数,删掉最早出现的数,每次求最大值,这个直接记录一下就好了. 数加入栈底部,删掉栈顶部的数,相当于加入一个数,删掉最晚出现的 ...

  8. 单调队列&单调栈归纳

    单调队列 求长度为M的区间内的最大(小)值 单调队列的基本操作,也就是经典的滑动窗口问题. 求长度为M的区间内最大值和最小值的最大差值 两个单调队列,求出长度为M的区间最大最小值的数组,分别求最大最小 ...

  9. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

随机推荐

  1. Python+OpenCV图像处理(三)—— Numpy数组操作图片

    一.改变图片每个像素点每个通道的灰度值 (一) 代码如下: #遍历访问图片每个像素点,并修改相应的RGB import cv2 as cv def access_pixels(image): prin ...

  2. jvm 工作原理

    作为一名Java使用者,掌握JVM的体系结构也是必须的. 说起Java,人们首先想到的是Java编程语言,然而事实上,Java是一种技术,它由四方面组成:Java编程语言.Java类文件格式.Java ...

  3. Eloquent JavaScript #08# Bugs and Errors

    索引 Notes strict mode js类型 js测试 Debugging Exceptions finally 异常分支 Exercise Retry The locked box Notes ...

  4. fjwc2019 D6T2 密文(trie+贪心)

    #194. 「2019冬令营提高组」密文 设$s[i]$表示前$i$个密文的异或和 容易发现,只要知道$s[0]~s[n](s[0]=0)$就可以知道每一位的值. 转化一下,就变成了在完全图上求最小生 ...

  5. php路由

    打开httpd.ini添加: RewriteRule (.*)$ /index\.php\?s=$1 [I] 高版本打开web.Config添加节点:<rewrite> <rules ...

  6. Windows环境下ELK平台的搭建

    .背景 日志主要包括系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的错误及错误发生的原因.经常分析日志可以了解服务器的负荷,性能安全性,从而及时采 ...

  7. Python3+Dlib实现简单人脸识别案例

    Python3+Dlib实现简单人脸识别案例 写在前边 很早很早之前,当我还是一个傻了吧唧的专科生的时候,我就听说过人脸识别,听说过算法,听说过人工智能,并且也出生牛犊不怕虎般的学习过TensorFl ...

  8. oracle常用SQL——创建用户、表空间、授权(12C)

    一.查询 查询用户所属 表空间 select username,default_tablespace from dba_users where username='xxx' 查询表空间情况 SELEC ...

  9. windows线程池之I/O完成端口(IOCP)

    对于这个学习主要参考博客 http://blog.csdn.net/neicole/article/details/7549497

  10. 位运算之a^b

    题目链接:https://www.acwing.com/problem/content/91/ 参考链接:https://blog.csdn.net/chaiwenjun000/article/det ...