LOJ 3089: 洛谷 P5319: 「BJOI2019」奥术神杖
题目传送门:LOJ #3089。
题意简述:
有一个长度为 \(n\) 的母串,其中某些位置已固定,另一些位置可以任意填。
同时给定 \(m\) 个小串,第 \(i\) 个为 \(S_i\),所有位置都已固定,它的价值为 \(V_i\)。
每次每个小串在母串中出现一次,便会给答案的多重集贡献一个 \(V_i\)。
最终的答案为多重集的几何平均数,定义空集的几何平均数为 \(1\)。
请你求出一个合法母串(往可以填的位置填合法字符)使得答案最大。
\(1\le n,s\le 1501\),\(1\le V_i\le \max V=10^9\),其中 \(\displaystyle s=\sum_{i=1}^{m}|S_i|\)。
题解:
假设多重集的大小为 \(c\),第 \(i\) 个元素为 \(w_i\),则 \(\displaystyle\mathrm{Ans}=\sqrt[c]{\prod_{i=1}^{c}w_i}\)。
两边取对数,有 \(\displaystyle\ln\mathrm{Ans}=\frac{1}{c}\sum_{i=1}^{c}\ln w_i\),转化为经典的 0/1 分数规划问题。
二分答案,若等式右边大于 \(\mathrm{mid}\),则有:
\(\begin{aligned}\frac{1}{c}\sum_{i=1}^{c}\ln w_i&>\mathrm{mid}\\\sum_{i=1}^{c}\ln w_i&>c\cdot\mathrm{mid}\\\sum_{i=1}^{c}(\ln w_i-\mathrm{mid})&>0\end{aligned}\)
所以,建出小串的 AC 自动机,然后二分答案后在 AC 自动机上 DP 判断不等式是否满足。
DP 时每个小串的权值设为 \(\ln V_i-\mathrm{mid}\),注意要记录最佳转移点,以输出方案。
下面是代码,复杂度 \(\mathcal{O}(s\Sigma(\log\max V-\log\epsilon))\):
#include <cstdio>
#include <cmath>
typedef double f64;
const int MN = 1505, Sig = 10;
const f64 eps = 1e-6, inf = 1e99;
int N, M;
char T[MN];
char str[MN];
int ch[MN][Sig], fail[MN], sum[MN], cnt;
f64 val[MN];
inline void Insert(char *s, f64 v) {
int now = 0;
for (; *s; ++s) {
if (!ch[now][*s & 15]) ch[now][*s & 15] = ++cnt;
now = ch[now][*s & 15];
} ++sum[now], val[now] += v;
}
int que[MN], l, r;
void BuildAC() {
fail[0] = -1;
que[l = r = 1] = 0;
while (l <= r) {
int u = que[l++];
for (int i = 0; i < Sig; ++i) {
if (ch[u][i]) {
int x = fail[u];
while (~x && !ch[x][i]) x = fail[x];
if (~x) fail[ch[u][i]] = ch[x][i];
que[++r] = ch[u][i];
}
else if (~fail[u]) ch[u][i] = ch[fail[u]][i];
}
}
for (int i = 2; i <= r; ++i)
sum[que[i]] += sum[fail[que[i]]],
val[que[i]] += val[fail[que[i]]];
}
f64 f[MN][MN];
int g[MN][MN][2];
char AT[MN];
inline f64 DP(f64 V) {
for (int j = 0; j <= cnt; ++j) val[j] -= sum[j] * V;
for (int i = 0; i <= N; ++i)
for (int j = 0; j <= cnt; ++j)
f[i][j] = -inf;
f[0][0] = 0;
for (int i = 0; i < N; ++i) {
for (int j = 0; j <= cnt; ++j) {
if (f[i][j] == -inf) continue;
if (T[i] == '.') {
for (int k = 0; k < Sig; ++k) {
int _j = ch[j][k];
if (f[i + 1][_j] < f[i][j] + val[_j])
f[i + 1][_j] = f[i][j] + val[_j],
g[i + 1][_j][0] = j,
g[i + 1][_j][1] = k;
}
}
else {
int _j = ch[j][T[i] & 15];
if (f[i + 1][_j] < f[i][j] + val[_j])
f[i + 1][_j] = f[i][j] + val[_j],
g[i + 1][_j][0] = j,
g[i + 1][_j][1] = T[i] & 15;
}
}
}
for (int j = 0; j <= cnt; ++j) val[j] += sum[j] * V;
int ans = 0;
for (int j = 1; j <= cnt; ++j)
if (f[N][j] > f[N][ans]) ans = j;
for (int i = N, j = ans; i >= 1; --i)
AT[i - 1] = g[i][j][1] | 48,
j = g[i][j][0];
return f[N][ans];
}
int main() {
scanf("%d%d", &N, &M);
scanf("%s", T);
for (int i = 1; i <= M; ++i) {
f64 v;
scanf("%s%lf", str, &v);
Insert(str, log(v));
}
BuildAC();
f64 l = 0, r = log(1e9 + 5), mid, ans = 0;
while (r - l > eps) {
mid = (l + r) / 2;
if (DP(mid) > 0) ans = mid, l = mid;
else r = mid;
}
DP(ans);
printf("%s\n", AT);
return 0;
}
LOJ 3089: 洛谷 P5319: 「BJOI2019」奥术神杖的更多相关文章
- LOJ 3093: 洛谷 P5323: 「BJOI2019」光线
题目传送门:LOJ #3093. 题意简述: 有 \(n\) 面玻璃,第 \(i\) 面的透光率为 \(a\),反射率为 \(b\). 问把这 \(n\) 面玻璃按顺序叠在一起后,\(n\) 层玻璃的 ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- 【LOJ】#3089. 「BJOI2019」奥术神杖
LOJ#3089. 「BJOI2019」奥术神杖 看见乘积就取log,开根号就是除法,很容易发现这就是一道01分数规划.. 然后建出AC自动机直接dp就行,判断条件要设成>0,因为起点的值是1, ...
- LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划
题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...
- LOJ 3045: 洛谷 P5326: 「ZJOI2019」开关
题目传送门:LOJ #3045. 题意简述 略. 题解 从高斯消元出发好像需要一些集合幂级数的知识,就不从这个角度思考了. 令 \(\displaystyle \dot p = \sum_{i = 1 ...
- LOJ 3043: 洛谷 P5280: 「ZJOI2019」线段树
题目传送门:LOJ #3043. 题意简述: 你需要模拟线段树的懒标记过程. 初始时有一棵什么标记都没有的 \(n\) 阶线段树. 每次修改会把当前所有的线段树复制一份,然后对于这些线段树实行一次区间 ...
- LOJ 2483: 洛谷 P4655: 「CEOI2017」Building Bridges
题目传送门:LOJ #2483. 题意简述: 有 \(n\) 个数,每个数有高度 \(h_i\) 和价格 \(w_i\) 两个属性. 你可以花费 \(w_i\) 的代价移除第 \(i\) 个数(不能移 ...
- LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset
题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...
- LOJ 2249: 洛谷 P2305: 「NOI2014」购票
题目传送门:LOJ #2249. 题意简述: 有一棵以 \(1\) 号节点为根节点的带边权的树. 除了 \(1\) 号节点的所有节点上都有人需要坐车到达 \(1\) 号节点. 除了 \(1\) 号节点 ...
随机推荐
- 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...
- luogu4932 浏览器 (拆)
分析1的个数的奇偶性: 奇xor奇=偶xor偶=偶 奇xor偶=奇 所以只要统计1的个数是奇数的数的个数 和 是偶数的个数 乘一起就行了 直接用bitset来做,虽然常数很小/数据随机可以过,但复杂度 ...
- HTML5小游戏-简单抽奖小游戏
换了新工作以后,专注前端开发,平常空闲时间也比较多,可以多钻研一下技术,写一下博客.最近在学习canvas,参考网上的slotmachine插件,用canvas实现了一个简单抽奖小游戏. ...
- JavaScript -- throw、try 和 catch
try 语句测试代码块的错误. catch 语句处理错误. throw 语句创建自定义错误. 很想java哦. <!DOCTYPE html> <html> <head& ...
- Windows下查看游戏服务器的IP地址
在任务管理器中查看进程的PID 在cmd中使用netstat -aon,找到PID对应的IP地址
- vuejs怎么在服务器部署?(知乎)
作者:知乎用户链接:https://www.zhihu.com/question/46630687/answer/157166318来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...
- 【bzoj5161】最长上升子序列 状压dp+打表
题目描述 现在有一个长度为n的随机排列,求它的最长上升子序列长度的期望. 为了避免精度误差,你只需要输出答案模998244353的余数. 输入 输入只包含一个正整数n.N<=28 输出 输出只包 ...
- (Java)入门训练 斐波那契数列
问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少. 输入格式 输入包含一个整数n ...
- java 中方法重载
方法的重载 * 在同一个类中,方法名相同,参数列表不同.与返回值类型无关. * 参数列表不同: * A:参数个数不同 * B:参数类型不同 * C:参数的顺序不同(不算重载 报错) ex: publi ...
- python小demo-01: 线程池+多进程实现cpu密集型操作
起因: 公司有一个小项目,大概逻辑如下: 服务器A会不断向队列中push消息,消息主要内容是视频的地址,服务器B则需要不断从队列中pop消息,然后将该视频进行剪辑最终将剪辑后的视频保存到云服务器.个人 ...