rrqm/s:   每秒进行 merge 的读操作数目。即 delta(rmerge)/s
wrqm/s:  每秒进行 merge 的写操作数目。即 delta(wmerge)/s
r/s:           每秒完成的读 I/O 设备次数。即 delta(rio)/s
w/s:         每秒完成的写 I/O 设备次数。即 delta(wio)/s
rsec/s:    每秒读扇区数。即 delta(rsect)/s
wsec/s:  每秒写扇区数。即 delta(wsect)/s
rkB/s:     每秒读K字节数。是 rsect/s 的一半,因为每扇区大小为512字节。(需要计算)
wkB/s:    每秒写K字节数。是 wsect/s 的一半。(需要计算)
avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区)。delta(rsect+wsect)/delta(rio+wio)
avgqu-sz:平均I/O队列长度。即 delta(aveq)/s/1000 (因为aveq的单位为毫秒)。
await:    平均每次设备I/O操作的等待时间 (毫秒)。即 delta(ruse+wuse)/delta(rio+wio)
svctm:   平均每次设备I/O操作的服务时间 (毫秒)。即 delta(use)/delta(rio+wio)
%util:      一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的。即 delta(use)/s/1000 (因为use的单位为毫秒)

如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘
可能存在瓶颈。
idle小于70% IO压力就较大了,一般读取速度有较多的wait.

同时可以结合vmstat 查看查看b参数()和wa参数()

另外还可以参考
svctm  一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm  的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。await  的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。如果 svctm 比较接近 await,说明 I/O  几乎没有等待时间;如果 await 远大于 svctm,说明 I/O  队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator  算法,优化应用,或者升级 CPU。
队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。


别人一个不错的例子.(I/O 系统 vs. 超市排队)

举 一个例子,我们在超市排队 checkout 时,怎么决定该去哪个交款台呢? 首当是看排的队人数,5个人总比20人要快吧?  除了数人头,我们也常常看看前面人购买的东西多少,如果前面有个采购了一星期食品的大妈,那么可以考虑换个队排了。还有就是收银员的速度了,如果碰上了连  钱都点不清楚的新手,那就有的等了。另外,时机也很重要,可能 5  分钟前还人满为患的收款台,现在已是人去楼空,这时候交款可是很爽啊,当然,前提是那过去的 5 分钟里所做的事情比排队要有意义  (不过我还没发现什么事情比排队还无聊的)。

I/O 系统也和超市排队有很多类似之处:

r/s+w/s 类似于交款人的总数
平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数
平均服务时间(svctm)类似于收银员的收款速度
平均等待时间(await)类似于平均每人的等待时间
平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少
I/O 操作率 (%util)类似于收款台前有人排队的时间比例。

我们可以根据这些数据分析出 I/O 请求的模式,以及 I/O 的速度和响应时间。

下面是别人写的这个参数输出的分析

# iostat -x 1
avg-cpu:  %user   %nice    %sys   %idle
16.24    0.00    4.31   79.44
Device:                rrqm/s wrqm/s   r/s   w/s      rsec/s  wsec/s    rkB/s  wkB/s    avgrq-sz avgqu-sz   await  svctm  %util
/dev/cciss/c0d0     0.00    44.90    1.02 27.55    8.16  579.59     4.08   289.80    20.57    22.35        78.21   5.00  14.29
/dev/cciss/c0d0p1 0.00    44.90     1.02 27.55    8.16  579.59     4.08   289.80    20.57    22.35        78.21   5.00  14.29
/dev/cciss/c0d0p2 0.00   0.00  0.00  0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00

上面的 iostat 输出表明秒有 28.57 次设备 I/O 操作: 总IO(io)/s = r/s(读) +w/s(写) = 1.02+27.55 = 28.57 (次/秒) 其中写操作占了主体 (w:r = 27:1)。

平均每次设备 I/O 操作只需要 5ms 就可以完成,但每个 I/O 请求却需要等上 78ms,为什么? 因为发出的 I/O 请求太多 (每秒钟约 29 个),假设这些请求是同时发出的,那么平均等待时间可以这样计算:

平均等待时间 = 单个 I/O 服务时间 * ( 1 + 2 + … + 请求总数-1) / 请求总数

应用到上面的例子: 平均等待时间 = 5ms * (1+2+…+28)/29 = 70ms,和 iostat 给出的78ms 的平均等待时间很接近。这反过来表明 I/O 是同时发起的。

每秒发出的 I/O 请求很多 (约 29 个),平均队列却不长 (只有 2 个 左右),这表明这 29 个请求的到来并不均匀,大部分时间 I/O 是空闲的。

一秒中有 14.29% 的时间 I/O 队列中是有请求的,也就是说,85.71% 的时间里 I/O 系统无事可做,所有 29 个 I/O 请求都在142毫秒之内处理掉了。

delta(ruse+wuse)/delta(io)  = await = 78.21 => delta(ruse+wuse)/s =78.21 * delta(io)/s =  78.21*28.57 = 2232.8,表明每秒内的I/O请求总共需要等待2232.8ms。所以平均队列长度应为  2232.8ms/1000ms = 2.23,而 iostat 给出的平均队列长度 (avgqu-sz) 却为 22.35,为什么?! 因为  iostat 中有 bug,avgqu-sz 值应为 2.23,而不是 22.35。

iostat查看linux硬盘IO性能的更多相关文章

  1. 通过iostat来查看linux硬盘IO性能|实例分析

    iostat查看linux硬盘IO性能 rrqm/s: 每秒进行 merge 的读操作数目.即 delta(rmerge)/s wrqm/s: 每秒进行 merge 的写操作数目.即 delta(wm ...

  2. 用iostat对linux硬盘IO性能进行检测

    近期公司安装了几台DELL PE2650和2850的服务器,统一安装的是RHLE5.132位系统,而服务器的SCSI硬盘都统一做了raid1.公司老总要求对硬盘IO作统一检测报告,在Linux下找了许 ...

  3. 使用iostat来对linux硬盘IO性能进行检测

    -x显示扩展统计数据 # 每隔1s显示6个统计数据 $ iostat -x 1 6 # 每隔1s显示磁盘sda的6个统计数据 $ iostat -x sda 1 6 # 每隔1s显示设备sda及其分区 ...

  4. iostat来对linux硬盘IO性能进行了解

    http://www.php-oa.com/2009/02/03/iostat.html

  5. Centos硬盘IO性能检测命令iostat[转]

    Centos硬盘IO性能检测命令iostat[转] 在Linux下频繁存取文件后,物理内存会很快被用光,当程序结束后,内存不会被正常释放,而是一直作为caching.这个问题,貌似有不少人在问,不过都 ...

  6. [转]查看linux服务器硬盘IO读写负载

    最近一台linux服务器出现异常,系统反映很慢,相应的应用程序也无法反映,而且还出现死机的情况,经过几天的观察了解,发现服务器压力很大,主要的压力来自硬盘的IO访问已经达到100% 为了方便各位和自己 ...

  7. 查看linux服务器硬盘IO读写负载

    最近一台linux服务器出现异常,系统反映很慢,相应的应用程序也无法反映,而且还出现死机的情况,经过几天的观察了解,发现服务器压力很大,主要的压力来自硬盘的IO访问已经达到100% 为了方便各位和自己 ...

  8. Linux的IO性能监控工具iostat详解

    Linux系统出现了性能问题,一般我们可以通过top.iostat.free.vmstat等命令来查看初步定位问题.其中iostat可以提供更丰富的IO性能状态数据. . 基本使用 $iostat - ...

  9. 性能调优3:硬盘IO性能

    数据库系统严重依赖服务器的资源:CPU,内存和硬盘IO,通常情况下,内存是数据的读写性能最高的存储介质,但是,内存的价格昂贵,这使得系统能够配置的内存容量受到限制,不能大规模用于数据存储:并且内存是易 ...

随机推荐

  1. Shiro介绍

    前言 本文主要讲解的知识点有以下: 权限管理的基础知识 模型 粗粒度和细粒度的概念 回顾URL拦截的实现 Shiro的介绍与简单入门 一.Shiro基础知识 在学习Shiro这个框架之前,首先我们要先 ...

  2. 【AtCoder】Tenka1 Programmer Contest

    C - 4/N 列出个方程枚举解一下 #include <bits/stdc++.h> #define fi first #define se second #define pii pai ...

  3. URAL - 1427-SMS

    题目大意:给你长度为n的字符串(n<=1e6),让你对它进行划分,如果一段里面只有字母和 空格可以包含m(m<=1e5)个,如果有其他字符只能包含n个,问你最少需要分成几段. 思路:划分d ...

  4. 关闭swap的危害——一旦内存耗尽,由于没有SWAP的缓冲,系统会立即开始OOM

    SWAP的罪与罚 发表于2012-11-08 说个案例:一台Apache服务器,由于其MaxClients参数设置过大,并且恰好又碰到访问量激增,结果内存被耗光,从而引发SWAP,进而负载攀升,最终导 ...

  5. 【noip模拟赛4】Matrix67的派对 dfs

    描述 Matrix67发现身高接近的人似乎更合得来.Matrix67举办的派对共有N(1<=N<=10)个人参加,Matrix67需要把他们安排在圆桌上.Matrix67的安排原则是,圆桌 ...

  6. 胜利大逃亡 HDU1429 (bfs)

    最后两题算是这个专题最难的两题了 这题关键是标记数组 我一开始设置的是 四维的  第三维是朝向  第四维是钥匙个数 但是 不同的取法钥匙个数可能会重复   如:取ab钥匙和取ac钥匙都是两枚  导致w ...

  7. 【Java】 剑指offer(6) 重建二叉树

    本文参考自<剑指offer>一书,代码采用Java语言.  更多:<剑指Offer>Java实现合集 题目 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的 ...

  8. Python 爬取生成中文词云以爬取知乎用户属性为例

    代码如下: # -*- coding:utf-8 -*- import requests import pandas as pd import time import matplotlib.pyplo ...

  9. poj 1797 最大最小路段【dijkstra】 (经典)

    <题目链接> 题目大意: Hugo Heavy要从城市1到城市N运送货物,有M条道路,每条道路都有它的最大载重量,问从城市1到城市N运送最多的重量是多少. 解题分析: 感觉这道题用dijk ...

  10. 【Java并发核心五】Future 和 Callable

    默认情况下,线程Thread对象不具有返回值的功能,如果在需要取得返回值的情况下会极为不方便.jdk1.5中可以使用Future 和 Callable 来获取线程返回值. Callable 可以 看成 ...