(原)Show, Attend and Translate: Unsupervised Image Translation with Self-Regularization and Attention
转载请注明出处:
https://www.cnblogs.com/darkknightzh/p/9333844.html
论文网址:https://arxiv.org/abs/1806.06195
在gan中,对图像进行风格变换时,一般都是将整个图像进行变换。由于图像包含前景和背景,因而该论文在保持背景区域不变的前提下,对前景区域进行风格变换。同时,使用self-regularization项来约束变换前后背景区域的差异。
网络结构如下图所示。输入图像通过2层的下采样,而后通过9层的残差网络,在通过2层的上采样,得到。另一方面,通过预训练的vgg-19网络的前几层,并通过2层的上采样,在通过conv+sigmoid,得到Gattn,即前景区域的概率图。网络基本结构均为conv+bn+relu。残差部分使用空洞卷积,因为空洞卷积可以增加感受野的大小。损失函数包含两部分,传统的判别器的损失及感知损失。文中指出,感知损失比传统的距离更接近人类对相似性的认知。传统的判别网络为5层的CNN网络。
其中,
$G(x)={{G}_{attn}}(x)\otimes {{G}_{0}}(x)+(1-{{G}_{attn}}(x))\otimes x$
${{G}_{attn}}(x)\otimes {{G}_{0}}(x)$代表前景区域,$(1-{{G}_{attn}}(x))\otimes x$代表背景区域。${{G}_{attn}}(x)$为前景区域的概率图,像素范围为[0, 1]。
文中判别器:
${{L}_{D}}=\log (D(y))-\log (1-D(G(x)))$
生成器:
${{L}_{G}}={{l}_{adv}}(G(x),y)+\lambda {{l}_{reg}}(x,G(x))$
生成器包含两部分,传统gan的损失:
${{l}_{adv}}(G(x),y)=-\log (-D(G(x)))$
及self-regularization项损失:
${{l}_{reg}}(G(x),x)=\sum\limits_{l=1,2,3}{\frac{1}{{{H}_{l}}{{W}_{l}}}\sum\limits_{h,w}{(\left\| {{w}_{l}}\circ (\hat{F}(x)_{hw}^{l}-\hat{F}(G(x))_{hw}^{l}) \right\|_{2}^{2})}}$
${{l}_{reg}}$使用预训练的vgg-19网络的前三层加权得到。分别将输入图像x及生成的图像$G(x)$通过vgg-19网络前3层,得到对应的特征图,并计算特征图的l2 norm的平方,之后进行加权。各层权重经过大量实验得到为:
$({{w}_{1}},{{w}_{2}},{{w}_{3}})=(1/32,1/16,1/8)$
训练过程:先训练${{G}_{0}}$,再训练${{G}_{attn}}$,最后finetune整个网络。对于$\lambda $,从0增加,直至对抗损失降低到阈值$l_{adv}^{t}$之下,而后固定$\lambda $。
(原)Show, Attend and Translate: Unsupervised Image Translation with Self-Regularization and Attention的更多相关文章
- Unsupervised Image-to-Image Translation Networks --- Reading Writing
Unsupervised Image-to-Image Translation Networks --- Reading Writing 2017.03.03 Motivations: most ex ...
- Phrase-Based & Neural Unsupervised Machine Translation基于短语非监督机器翻译
1. 前言 本文介绍一种无监督的机器翻译的模型.无监督机器翻译最早是<UNSUPERVISED NEURAL MACHINE TRANSLATION>提出.这个模型主要的特点,无需使用平行 ...
- MUNIT:Multimodal Unsupervised Image-to-Image Translation - 1 - 论文学习,不成对数据
摘要:无监督图像转换是计算机视觉领域中一个重要而又具有挑战性的问题.给定源域中的一幅图像,目标是学习目标域中对应图像的条件分布,而不需要看到任何对应图像对的例子.虽然这种条件分布本质上是多模态的,但现 ...
- Unsupervised Image-to-Image Translation Networks
Abstract: 无监督图像到图像的翻译目的是学习不同域图像的一个联合分布,通过使用来自单独域图像的边缘分布.给定一个边缘分布,可以得到很多种联合分布.如果不加入额外的假设条件的话,从边缘分布无法推 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 7 Regularization 正则化
Lecture7 Regularization 正则化 7.1 过拟合问题 The Problem of Overfitting7.2 代价函数 Cost Function7.3 正则化线性回归 R ...
- Unpaired/Partially/Unsupervised Image Captioning
这篇涉及到以下三篇论文: Unpaired Image Captioning by Language Pivoting (ECCV 2018) Show, Tell and Discriminate: ...
- 简单实现Python调用有道API接口(最新的)
# ''' # Created on 2018-5-26 # # @author: yaoshuangqi # ''' import urllib.request import urllib.pars ...
- (转)Autonomous_Vehicle_Paper_Reading_List
Autonomous_Vehicle_Paper_Reading_List 2018-07-19 10:40:08 Reference:https://github.com/ZRZheng/Auton ...
- [转]NLP Tasks
Natural Language Processing Tasks and Selected References I've been working on several natural langu ...
随机推荐
- D 矩阵快速幂
Description <英雄联盟>(简称LOL)是由美国Riot Games开发,腾讯游戏运营的英雄对战网游.<英雄联盟>除了即时战略.团队作战外,还拥有特色的英雄.自动匹配 ...
- Python中List的append引用赋值问题处理
Python中的对象之间赋值时是按引用传递的,如果需要拷贝对象,需要使用标准库中的copy模块. 1. copy.copy 浅拷贝 只拷贝父对象,不会拷贝对象的内部的子对象. 2. copy.deep ...
- python全栈开发day16-正则表达式和re模块
1.昨日内容回顾 2.正则表达式(re模块是python中和正则表达式相关的模块) 1.作用 1).输入字符串是否符合匹配条件 2).从大段文字中匹配出符合条件的内容 2.字符组 [0-9a-zA-Z ...
- Python 打印当前文件相对路径和绝对路径
一.打印相对路径 print(__file__) 二.打印绝对路径 import os print(os.path.abspath(__file__)) 三.打印文件名 import os print ...
- kafka中生产者和消费者API
使用idea实现相关API操作,先要再pom.xml重添加Kafka依赖: <dependency> <groupId>org.apache.kafka</groupId ...
- BZOJ2809 [Apio2012]dispatching 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2809 题意概括 n个点组成一棵树,每个点都有一个领导力和费用,可以让一个点当领导,然后在这个点的子 ...
- 使用metasploit做SNMP扫描和利用
使用MSF用于SNMP扫描 auxiliary/scanner/snmp/snmp_login 介绍 补充知识: 在执行SNMP扫描之前,需要了解几件事情.首先,“只读”和“读写”团体名(commun ...
- Python + Selenium + AutoIt 模拟键盘实现另存为、上传、下载操作详解
前言 在web页面中,可以使用selenium的定位方式来识别元素,从而来实现页面中的自动化,但对于页面中弹出的文件选择框,selenium就实现不了了,所以就需引用AutoIt工具来实现. Auto ...
- C# 中删除控件的事件的方法类
方法一: 代码 /// <summary> /// 删除指定控件的指定事件 /// </summary> /// <param name="control&qu ...
- android sdk 汉化
作者:韩梦飞沙 Author:han_meng_fei_sha 邮箱:313134555@qq.com E-mail: 313134555 @qq.com === ===== ==== ==== == ...