题意:有K个棋子在一个大小为N×N的棋盘。一开始,它们都在棋盘的顶端,它们起始的位置是 (1,a1),(1,a2),...,(1,ak) ,它们的目的地是 (n,b1),(n,b2),...,(n,bk)。

一个位于 (r,c) 的棋子每一步只能向右走到 (r,c+1) 或者向下走到 (r+1,c) 。

我们把 i 棋子从 (1,ai) 走到 (n,bi) 的路径记作 pi 。

你的任务是计算有多少种方案把n个棋子送到目的地,并且对于任意两个不同的棋子 i,j ,使得路径 pi 与 pj 不相交(即没有公共点)。

思路:这里有一个结论,n个起点到n个终点的不相交路径的种数为:每个起点到每个终点的可能数组成的n*n的矩阵的行列式。

即求上矩阵行列式,其中e(ai,bi)代表从ai起点到bi终点的可能路径数量。

行列式求解用高斯消元。提交要用G++,C++一直超时emmmm

参考:HDU 5852:Intersection is not allowed!(行列式+逆元求组合数)

代码:

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
typedef long long ll;
using namespace std;
const int maxn = 1e5 + ;
const int seed = ;
const ll MOD = ;
const int INF = 0x3f3f3f3f;
int a[maxn], b[maxn];
ll e[][];
ll fac[maxn << ], niYuan[maxn << ];
ll pmul(ll a, ll b){
ll ans = ;
while(b){
if(b & ) ans = ans * a % MOD;
a = a * a % MOD;
b >>= ;
}
return ans;
}
ll C(int n, int m){
ll ret = fac[n] * niYuan[m] % MOD;
return ret * niYuan[n - m] % MOD;
}
void initFac(){
fac[] = niYuan[] = ;
for(ll i = ; i <= ; i++){
fac[i] = fac[i - ] * i % MOD;
niYuan[i] = pmul(fac[i], MOD - );
}
}
ll guass(int n){
ll ans = , f = ; //行列式和符号位
for(int i = ; i <= n; i++){
for(int j = i + ; j <= n; j++){
int x = i, y = j;
while(e[y][i]){
ll t = e[x][i] / e[y][i];
for(int k = i; k <= n; k++)
e[x][k] = (e[x][k] - e[y][k] * 1LL * t % MOD) % MOD;
swap(x,y);
}
if(x != i){
for(int k = ; k <= n; k++)
swap(e[i][k], e[j][k]);
f = -f;
}
}
ans = ans * e[i][i] % MOD;
if(ans == ) return ;
}
return (ans * f + MOD) % MOD;
}
int main(){
initFac();
int t;
scanf("%d", &t);
while(t--){
int n, k;
scanf("%d%d", &n, &k);
for(int i = ; i <= k; i++)
scanf("%d", &a[i]);
for(int i = ; i <= k; i++)
scanf("%d", &b[i]);
for(int i = ; i <= k; i++){
for(int j = ; j <= k; j++){
if(b[j] >= a[i]){
e[i][j] = C(n - + b[j] - a[i], b[j] - a[i]);
}
else e[i][j] = ;
}
}
printf("%lld\n", guass(k));
}
return ;
}

HDU 5852 Intersection is not allowed!(LGV定理行列式求组合数)题解的更多相关文章

  1. HDU 5852 Intersection is not allowed! ( 2016多校9、不相交路径的方案、LGV定理、行列式计算 )

    题目链接 题意 : 给定方格中第一行的各个起点.再给定最后一行与起点相对应的终点.问你从这些起点出发到各自的终点.不相交的路径有多少条.移动方向只能向下或向右 分析 : 首先对于多起点和多终点的不相交 ...

  2. hdu5852 Intersection is not allowed! 【矩阵行列式】

    题意 给出\(n*n\)网格\((n<=10^5)\) 顶部有\(K\)个起点,底部有\(K\)个相对应的终点 每次只能向下或向右走 求有多少种从各个起点出发到达对应终点且路径不相交的路径? 对 ...

  3. FJNU2018低程A 逃跑路线(Lucas + 中国剩余定理 + LGV定理)题解

    题目描述 n个人在w*h的监狱里面想要逃跑,已知他们的同伙在坐标(bi,h)接应他们,他们现在被关在(ai,1)现在他们必须要到同伙那里才有逃出去的机会,这n个人又很蠢只会从(x,y)->(x+ ...

  4. LGV定理 (CodeForces 348 D Turtles)/(牛客暑期多校第一场A Monotonic Matrix)

    又是一个看起来神奇无比的东东,证明是不可能证明的,这辈子不可能看懂的,知道怎么用就行了,具体看wikihttps://en.wikipedia.org/wiki/Lindstr%C3%B6m%E2%8 ...

  5. LGV定理

    LGV定理用于解决路径不相交问题. 定理 有 \(n\) 个起点 \(1, 2, 3, ..., n\),它们 分别对应 要到 \(n\) 个终点 \(A, B, C, ..., X\),并且要求路径 ...

  6. CodeForces 348D Turtles(LGV定理)题解

    题意:两只乌龟从1 1走到n m,只能走没有'#'的位置,问你两只乌龟走的时候不见面的路径走法有几种 思路:LGV定理模板.但是定理中只能从n个不同起点走向n个不同终点,那么需要转化.显然必有一只从1 ...

  7. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  8. Lindström–Gessel–Viennot lemma定理 行列式板子

    https://blog.csdn.net/qq_37025443/article/details/86537261 博客 下面是wiki上的讲解,建议耐心地看一遍...虽然看了可能还是不懂 http ...

  9. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

随机推荐

  1. html5-样式的三种方式

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  2. Maven的特点、优点-功能摘要

    Maven功能摘要 以下是Maven的主要特点: 遵循最佳实践的简单项目设置 - 在几秒钟内启动新项目或模块 所有项目的一致使用 - 意味着新开发人员进入项目的时间不会增加 卓越的依赖管理,包括自动更 ...

  3. 使用Navicat导入SQL文件

    2018-11-04 19:35:12 开始写 刷新后就可以看见导入的数据库了(按F5刷新) 谢谢.Thank you.Salamat Do(撒拉玛特朵).あリがCám o*n(嘉蒙)とゥ(阿里嘎都) ...

  4. codeforces 957 A. Tritonic Iridescence

    题意: 给出一个字符串,要求任意两个相同的字母不能相同,问这个字符串是否能有两种或者两种以上的表现形式. 思路: 简单判断一下: 1.问号在端点: 2.连续两个问号或者以上: 3.一个问号两端的字母是 ...

  5. XML文件怎么添加注释

    注释以 <!-- 开始并以 --> 结束,例如 <!--注释内容-->.   注释可以出现在文档序言中,包括文档类型定义 (DTD):文档之后:或文本内容中. 注释不能出现在属 ...

  6. jdk和jre区别

  7. Linux基础命令---切换用户su

    su 临时切换身份到另外一个用户,使用su切换用户之后,不会改变当前的工作目录,但是会改变一些环境变量. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUS ...

  8. I2S接口介绍

    I2S接口介绍一.I2S协议介绍 I2S协议作为音频数据传输协议,由Philips制定.该协议由三条数据线组成:1.SCLK:串行时钟,频率= 2 * 采样频率 * 采样位数.2.WS:字段(声道)选 ...

  9. Ubuntu 为 root 帐号开启 SSH 登录

    1. 修改 root 密码sudo passwd root 2. 以其他账户登录,通过 sudo nano 修改 /etc/ssh/sshd_config :xxx@ubuntu:~$ su - ro ...

  10. ORCAl存储过程

    1.存储过程结构 1.1 第一个存储过程 create or replace procedure proc1( para1 varchar2, para2 out varchar2, para3 in ...