【BZOJ2752】【Luogu P2221】 [HAOI2012]高速公路
不是很难的一个题目。正确思路是统计每一条边被经过的次数,但我最初由于习惯直接先上了一个前缀和再推的式子,导致极其麻烦难以写对而且会爆\(longlong\)。
#include <bits/stdc++.h>
using namespace std;
const int N = 100000 + 5;
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid ((l + r) >> 1)
#define int long long
int n, m, sum1, sum2, sum3;
struct Segment_Tree {
int tag[N << 2], s1[N << 2], s2[N << 2], s3[N << 2];
Segment_Tree () {
memset (s1, 0, sizeof (s1));
memset (s2, 0, sizeof (s2));
memset (s3, 0, sizeof (s3));
memset (tag, 0, sizeof (tag));
}
void push_up (int p) {
s1[p] = s1[ls] + s1[rs];
s2[p] = s2[ls] + s2[rs];
s3[p] = s3[ls] + s3[rs];
}
int F1 (int x, int y) {return y - x + 1;} // \sum_{i = x} ^ {y} i ^ 0
int F2 (int x, int y) {return (x + y) * (y - x + 1) / 2;} // \sum_{i = x} ^ {y} i ^ 1
int F3 (int x, int y) {
x = x - 1;
int w1 = x * (x + 1) * (2 * x + 1) / 6;
int w2 = y * (y + 1) * (2 * y + 1) / 6;
return w2 - w1;
} // \sum_{i = x} ^ {y} i ^ 2
void work (int p, int l, int r, int val) {
s1[p] += F1 (l, r) * val;
s2[p] += F2 (l, r) * val;
s3[p] += F3 (l, r) * val;
tag[p] += val;
}
void push_down (int p, int l, int r) {
work (ls, l, mid + 0, tag[p]);
work (rs, mid + 1, r, tag[p]);
tag[p] = 0;
}
void modify (int nl, int nr, int w, int l = 1, int r = n, int p = 1) {
if (nl <= l && r <= nr) {
work (p, l, r, w);
return;
}
push_down (p, l, r);
if (nl <= mid) modify (nl, nr, w, l, mid, ls);
if (mid < nr) modify (nl, nr, w, mid + 1, r, rs);
push_up (p); return;
}
void query (int nl, int nr, int l = 1, int r = n, int p = 1) {
if (nl <= l && r <= nr) {
sum1 += s1[p];
sum2 += s2[p];
sum3 += s3[p];
return;
}
push_down (p, l, r);
if (nl <= mid) query (nl, nr, l, mid, ls);
if (mid < nr) query (nl, nr, mid + 1, r, rs);
push_up (p); return;
}
}tr; // 维护 \sum_{x = L}^{R} sumd(x)
int gcd (int x, int y) {
return y ? gcd (y, x % y) : x;
}
signed main () {
freopen ("data.in", "r", stdin);
cin >> n >> m;
for (int i = 1; i <= m; ++i) {
char opt; int l, r, v;
cin >> opt;
if (opt == 'C') {
cin >> l >> r >> v; r--;
tr.modify (l, r, v);
} else {
cin >> l >> r; r--;
sum1 = sum2 = sum3 = 0;
tr.query (l, r);
int w1 = (r - l + 1 - r * l);
int w2 = l + r;
int w3 = -1;
int upp = w1 * sum1 + w2 * sum2 + w3 * sum3;
int dwn = (r - l + 2) * (r - l + 1) / 2;
int d = gcd (upp, dwn); upp /= d, dwn /= d;
cout << upp << "/" << dwn << endl;
}
}
}
【BZOJ2752】【Luogu P2221】 [HAOI2012]高速公路的更多相关文章
- 【题解】Luogu P2221 [HAOI2012]高速公路
原题传送门 这道题还算简单 我们要求的期望值: \[\frac{\sum_{i=l}^r\sum_{j=l}^rdis[i][j]}{C_{r-l+1}^{2}}\] 当然是上下两部分分别求,下面肥肠 ...
- luogu P2221 [HAOI2012]高速公路题解
题面 很套路的拆式子然后线段树上维护区间和的题.一般都是把式子拆成区间内几个形如\(\sum i*a_i, \sum i^2 * a_i\)的式子相加减的形式. 考虑一次询问[l,r]的答案怎么算: ...
- P2221 [HAOI2012]高速公路(线段树)
P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 ...
- [Luogu 2221] HAOI2012 高速公路
[Luogu 2221] HAOI2012 高速公路 比较容易看出的线段树题目. 由于等概率,期望便转化为 子集元素和/子集个数. 每一段l..r中,子集元素和为: \(\sum w_{i}(i-l+ ...
- 洛谷 P2221 [HAOI2012]高速公路
链接: P2221 题意: 有 \(n(1\leq n\leq 10^5)\) 个点,从第 \(i(1\leq i< n)\) 个点向第 \(i+1\) 个点连有边.最初所有边长 \(v_i\) ...
- 洛谷P2221 [HAOI2012]高速公路
线段树 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...
- P2221 [HAOI2012]高速公路
思路 考虑每一条边的贡献,然后推式子 \[ \begin{align}&\sum_{i}V_i\times(R-i+1)\times(i-L+1)\\=&\sum_{i}V_i\lef ...
- 洛谷P2221 [HAOI2012]高速公路(线段树+概率期望)
传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们 ...
- BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 608 Solved: 199[Submit][ ...
- 【线段树】BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1621 Solved: 627[Submit] ...
随机推荐
- Docker 容器中搭建 nexus npm私库
1,版本 dockers :1.13.1 :nexus 3 2,安装 docker pull liumiaocn/nexus 3,启动 项目 详细 Nexus UI 8081 private re ...
- selenium三种断言以及异常类型
elenium提供了三种模式的断言:assert .verify.waitfor 1)Assert(断言) 失败时,该测试将终止. 2)Verify(验证) 失败时,该测试将继续执行,并将错误记入日志 ...
- C++实现生产者和消费者
传统的生产者消费者模型 生产者-消费者模式是一个十分经典的多线程并发协作的模式,弄懂生产者-消费者问题能够让我们对并发编程的理解加深.所谓生产者-消费者问题,实际上主要是包含了两类线程,一种是生产者线 ...
- 【并行计算-CUDA开发】从零开始学习OpenCL开发(一)架构
多谢大家关注 转载本文请注明:http://blog.csdn.net/leonwei/article/details/8880012 本文将作为我<从零开始做OpenCL开发>系列文章的 ...
- 浅谈Web图像优化
前端优化有很多,图像优化也是其中的一部分.无论是渐进增强还是优雅降级,图像优化成为了开发上不可忽视的一部分. 知其然,须知其所以然 图像优化的前提是需要了解图像的基本原理.常规的图像格式分为矢量图和位 ...
- Installation failed with message Failed to commit install session 634765663 with command cmd package
用小米真机测试时,安装app总会提示这个错误两遍,然后再重新安装. 解决办法:去掉这个√.
- windows 装mac
必备条件: 1.vmware虚拟机 2.给相应版本虚拟机打mac补丁 3.用securable检测CPU支持虚拟化设置 4.mac镜像文件 5.这时候还不能启动虚拟机,还需要在引导文件里面进行参数修改 ...
- Mybatis动态SQL之使用foreach完成复杂查询
一.foreach概述 对于一些SQL语句中含有in条件.需要迭代条件集合来生产的情况,就需要使用foreach标签来实现SQL条件的迭代.foreach主要用在构建in条件中,它可以在SQL语句中迭 ...
- celery异步发送邮件
利用Django框架发送邮件的详细过程,在前两天的博客中有所记录,但是单纯的那样发邮件是有非常大的问题的,这就需要celery异步发送来解决 首先我们来看一下邮件发送的过程: Django网站先发送到 ...
- Magento2入门之修改logo
本文用于学习记录用 1.主题创建是在路径 /app/design/frontend/公司名/主题名称/ 我自己创建的路径为 app/design/frontend/Bman/castle,以下操作都在 ...