Luogu P5468 [NOI2019]回家路线 (斜率优化、DP)
题目链接: (luogu) https://www.luogu.org/problemnew/show/P5468
题解: 爆long long毁一生
我太菜了,这题这么简单考场上居然没想到正解……
设\(dp[i]\)表示最后一步是坐\(i\)这辆车,一共花在等待上的烦躁值(不包括最终时间)为\(f[i]\).
然后容易发现这个转移是个DAG。(我在考场上居然以为有环,于是直接放弃……)
转移方程\(dp[i]=\min_{j|y[j]=x[i]}dp[j]+A(x_i-x_j)^2+B(x_i-x_j)+C\)
然后这东西显然可以斜率优化,按时间顺序枚举每个\(i\), 对于一个\(i\)的开始我们根据\(x[i]\)求出\(dp[i]\), 对于一个\(i\)的结束我们用\(dp[i]\)去更新\(y[i]\). 然后显然这个东西可以斜率优化,那么就对每个点\(i\)维护凸壳即可。
一定注意不要爆long long!我的\(\inf\)开到了\(10^{11}\), 所以必须保证不能把\(\inf\)加入到队列里,否则斜率优化比较的时候两个相乘必爆ll.
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#include<vector>
#include<algorithm>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 1e5;
const int M = 2e5;
const int C = 1000;
const llong INF = 100000000000ll;
struct Point
{
llong x,y;
Point() {}
Point(llong _x,llong _y) {x = _x,y = _y;}
};
struct Element
{
int u,v; llong x,y;
} a[M+3];
vector<int> sid[C+3],tid[C+3];
vector<int> que[M+3];
int hd[M+3];
llong dp[M+3];
int n,m;
llong arga,argb,argc;
llong calcy(llong x) {return dp[x]+arga*a[x].y*a[x].y-argb*a[x].y;}
llong calcx(llong x) {return 2ll*arga*a[x].y;}
int cmp_slope(int x,int y,int z)
{
llong xx = calcx(x),xy = calcy(x),yx = calcx(y),yy = calcy(y),zx = calcx(z),zy = calcy(z);
return (yy-xy)*(zx-yx)>(zy-yy)*(yx-xx) ? 1 : -1;
}
llong calcdp(int x,llong y) {return dp[x]+arga*(y-a[x].y)*(y-a[x].y)+argb*(y-a[x].y)+argc;}
int main()
{
scanf("%d%d%lld%lld%lld",&n,&m,&arga,&argb,&argc); int mx = 0;
for(int i=1; i<=m; i++)
{
scanf("%d%d%lld%lld",&a[i].u,&a[i].v,&a[i].x,&a[i].y);
sid[a[i].x].push_back(i); mx = max(mx,(int)a[i].y);
}
que[1].push_back(0);
llong ans = INF;
dp[1] = 0ll; for(int i=2; i<=m; i++) dp[i] = INF;
for(int i=0; i<=mx; i++)
{
for(int j=0; j<tid[i].size(); j++)
{
int x = tid[i][j],v = a[x].v; //x: 边的编号 v: 终点的编号
while(hd[v]+1<que[v].size() && cmp_slope(que[v][que[v].size()-2],que[v][que[v].size()-1],x)>=0) {que[v].pop_back();}
que[v].push_back(x);
}
for(int j=0; j<sid[i].size(); j++)
{
int x = sid[i][j],u = a[x].u; //x: 边的编号 u: 起点的编号
if(que[u].size()==0) continue; //注意特判!
while(hd[u]+1<que[u].size() && calcdp(que[u][hd[u]],i)>=calcdp(que[u][hd[u]+1],i)) {hd[u]++;}
dp[x] = calcdp(que[u][hd[u]],i);
if(a[x].v==n) {ans = min(ans,dp[x]+a[x].y);}
tid[a[x].y].push_back(x); //如果读入时把所有y全都放进去,那么会导致队列中出现inf而爆long long.
}
}
printf("%lld\n",ans);
return 0;
}
Luogu P5468 [NOI2019]回家路线 (斜率优化、DP)的更多相关文章
- P5468 [NOI2019]回家路线 斜率优化 dp
LINK:回家路线 (文化课 oi 双爆炸 对 没学上的就是我.(我错了不该这么丧的. 不过还能苟住一段时间.当然是去打NOI了 这道题去年同步赛的时候做过.不过这里再次提醒自己要认真仔细的看题目 不 ...
- 【题解】Luogu P5468 [NOI2019]回家路线
原题传送门 前置芝士:斜率优化 不会的可以去杜神博客学 这道题我考场上只会拆点跑最短路的70pts做法 后来回家后发现错误的爆搜都能拿满分(刀片) 还有很多人\(O(mt)\)过的,还是要坚持写正解好 ...
- P5468 [NOI2019]回家路线
传送门 看题目一眼斜率优化,然后写半天调不出来 结果错误的 $dfs$ 有 $95$ 分?暴力 $SPFA$ 就 $AC$ 了? 讲讲正解: 显然是斜率优化的式子: 先不考虑 $q_{s_k}$ 的贡 ...
- luogu 5468 [NOI2019]回家路线 最短路/暴力
想写一个 70 pts 算法,结果数据水,直接就切了 最短路: // luogu-judger-enable-o2 #include<bits/stdc++.h> using namesp ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
随机推荐
- MySQL -2- 体系结构--随笔小记
简介与安装NoSQLRDBMS版本安装方式二进制安装,源码安装体系结构CS模型TCP/IPsocketmysql master thread 实例mysqld 的程序构成连接层 协议.验证.链接线程S ...
- HDU-5155 Harry And Magic Box
题目描述 在\(n*m\)的矩阵内每一行每一列都有钻石,问钻石分布的种类? 答案有可能很大,所以输出答案对\(1000000007\)取模. Input 对于每个测试用例,有两个整数\(n\)和\(m ...
- bootstrap modal 闪退的办法
调用:
- tarjan算法求无向图的桥、边双连通分量并缩点
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...
- filebeat开启自带模块收集日志如何辨别日志来源等
filebeat启动自带模块后,日志先输出到Redis中 比如开启了system模块日志和redis模块日志 在Redis中查看收集过来的日志时,可以看到如下的这些信息 system日志信息 { &q ...
- [WPF]BringIntoView
1.在scrollview 中的frameworkelement可以使用 FE.BringIntoView(); 滚动到此控件. 2.该 方法能一个重载 Bottom.BringIntoView(ne ...
- RateLimit--使用guava来做接口限流
转:https://blog.csdn.net/jiesa/article/details/50412027 一.问题描述 某天A君突然发现自己的接口请求量突然涨到之前的10倍,没多久该接口几乎不 ...
- 10.AutoMapper 之自定义值解析器(Custom Value Resolvers)
https://www.jianshu.com/p/3e7cf1d1f17d 自定义值解析器(Custom Value Resolvers) 虽然AutoMapper涵盖了相当多的目标成员映射方案,但 ...
- volatile关键字?MESI协议?指令重排?内存屏障?这都是啥玩意
一.摘要 三级缓存,MESI缓存一致性协议,指令重排,内存屏障,JMM,volatile.单拿一个出来,想必大家对这些概念应该有一定了解.但是这些东西有什么必然的联系,或者他们之间究竟有什么前世今生想 ...
- ubuntu编译安装swoole (存多版本php时)
一 切换php版本 见 https://www.cnblogs.com/bushuwei/p/11699503.html 二 编译安装swoole 这里对pecl安装不做介绍,以下是编译安装,复制 ...