Find the answer

Time Limit: 4000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 0 Accepted Submission(s): 0

Problem Description

Given a sequence of n integers called W and an integer m. For each i (1 <= i <= n), you can choose some elements W**k (1 <= k < i), and change them to zero to make ∑i**j=1W**j<=m. So what's the minimum number of chosen elements to meet the requirements above?.

Input

The first line contains an integer Q --- the number of test cases.

For each test case:

The first line contains two integers n and m --- n represents the number of elemens in sequence W and m is as described above.

The second line contains n integers, which means the sequence W.

1 <= Q <= 15

1 <= n <= 2*105

1 <= m <= 109

For each i, 1 <= W**i <= m

Output

For each test case, you should output n integers in one line: i-th integer means the minimum number of chosen elements W**k (1 <= k < i), and change them to zero to make ∑i**j=1W**j<=m.

Sample Input

2
7 15
1 2 3 4 5 6 7
5 100
80 40 40 40 60

Sample Output

0 0 0 0 0 2 3
0 1 1 2 3

题意

自己读题,几句话很难说清楚

转化一下就是将最少的数变成0,并且自己不能选,使\(\sum_{j=1}^{i} \leq m\),输出最小的次数。

题解

贪心一下,取最大的几个。

离散+权值线段树就成。

代码

#include<bits/stdc++.h>
#define int long long
#define DEBUG cerr << "Call out: " << __func__ << "\t" << "Line: " << __LINE__ << "\t :"
using namespace std;
#define MAXN 200010
struct sgt
{
int val,p;
int l,r;
} f[MAXN<<2]; int wh[MAXN];
int a[MAXN];
pair <int,int> pt[MAXN];
int n;
int m; void build(int x,int l,int r)
{
f[x].l = l;
f[x].r = r;
f[x].val = f[x].p = 0;
if (l == r) return;
build(x<<1,l,(l+r)>>1);
build(x<<1|1,((l+r)>>1)+1,r);
} void add(int x,int pos,int val)
{
f[x].val += val;
f[x].p ++;
if (f[x].l == pos && f[x].r == pos) return;
if (pos > f[x<<1].r) add(x<<1|1,pos,val);
else add(x<<1,pos,val);
} int query(int x,int val)
{
if (f[x].l == f[x].r)
if (f[x].val == val) return f[x].p;
else return 0;
if (f[x<<1].val >= val) return query(x<<1,val);
return f[x<<1].p + query(x<<1|1,val - f[x<<1].val);
} signed main()
{
int T;
cin >> T;
while (T--)
{
cin >> n >> m;
memset(f,0,sizeof(f));
build(1,1,n);
for (int i=1; i<=n; i++)
scanf("%d",a+i),pt[i].first = a[i], pt[i].second = i;
sort(pt+1,pt+n+1);
for (int i=1; i<=n; i++)
wh[pt[i].second] = i;
int tot = 0;
for (int i=1; i<=n; i++)
{
tot += a[i];
if (tot <= m) printf("0 ");
if (tot > m) printf("%d ",i-query(1,m-a[i])-1);
add(1,wh[i],a[i]);
}
puts("");
}
}

2019 Multi-University Training Contest 3 T7 Find the answer的更多相关文章

  1. 2019 Nowcoder Multi-University Training Contest 4 E Explorer

    线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...

  2. 2019 Nowcoder Multi-University Training Contest 1 H-XOR

    由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...

  3. 2019 Multi-University Training Contest 8

    2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...

  4. 2019 Multi-University Training Contest 7

    2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...

  5. 2019 Multi-University Training Contest 1

    2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...

  6. 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...

  7. 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 A. fraction upsolved 题意 输入 \(x,p\),输出最小的 \(b\) 使得 \(bx\%p&l ...

  8. HDU校赛 | 2019 Multi-University Training Contest 6

    2019 Multi-University Training Contest 6 http://acm.hdu.edu.cn/contests/contest_show.php?cid=853 100 ...

  9. HDU校赛 | 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 http://acm.hdu.edu.cn/contests/contest_show.php?cid=852 100 ...

随机推荐

  1. 微信小程序资源整理

    微信小程序相关的文档.教程.开源项目等资源的整理,以便于开发学习使用. —— —— 收录仅作个人学习使用,涉及侵权行为及时联系: maple_6392@163.com 项目地址:GitHub | 码云 ...

  2. Linux用ICMP协议实现简单Ping网络监测功能

    ICMP是(Internet Control Message Protocol)Internet控制报文协议.它是TCP/IP协议族的一个子协议,用于在IP主机.路由器之间传递控制消息.控制消息是指网 ...

  3. Python和mysql的连接

    python与mysql的连接: 说明:前提是已近安装了mysql以及可视化工具(本人装的是Navicat) 1.在cmd下下载Python的第三方数据库包:pip install pymysql: ...

  4. Ubantu问题记录

    2019.4.21Ubantu问题:常用命令:sudo是一种权限管理机制,依赖于/etc/sudoers,定义了授权给哪个用户可以以管理员的身份执行管理命令格式:sudo -u USERNAME CO ...

  5. Pycharm Debug 问题

    Pycharm debug 出现如下问题 Connected to pydev debugger (build 181.4668.75) Traceback (most recent call las ...

  6. ImportError: Could not import PIL.Image.

    pip install pillow

  7. Coco56公众号关键字索引

    目录 1. 本文地址 2. 公众号介绍 3. 关键词及含义 1. 本文地址 博客园:https://www.cnblogs.com/coco56/p/11182421.html 简书:https:// ...

  8. linux格式化磁盘命令

    linux格式化磁盘命令           linux mkfs         指令:mkfs 使用权限 : 超级使用者 使用方式 : mkfs [-V] [-t fstype] [fs-opti ...

  9. UVa 10047 自行车 状态记录广搜

    每个格子(x,y,drection,color) #include<iostream> #include<cstdio> #include<cstring> #in ...

  10. 微信开发企业支付到银行卡PHP

    微信开发企业支付到银行卡 功能详解 不会的朋友可以加我QQ:344902511先发个微信支付官方链接你查看https://pay.weixin.qq.com/wiki/doc/api/tools/mc ...