python实现马赛克拼图!
python实现马赛克拼图
直接上代码!
代码如下:
#!/usr/local/bin/python3
# --*-- coding:utf8 --*--
import getopt
import sys
import os
import logging
from PIL import Image
from multiprocessing import Process, Queue, cpu_count
TILE_SIZE = 30 # 素材图片大小
TILE_MATCH_RES = 10 #配置指数 ,值越大匹配度越高,执行时间越长
ENLARGEMENT = 4 # 生成的图片是原始图片的多少倍
TILE_BLOCK_SIZE = int(TILE_SIZE / max(min(TILE_MATCH_RES, TILE_SIZE), 1))
WORKER_COUNT = max(cpu_count() - 1, 1)
EOQ_VALUE = None
WARN_INFO = """ *缺少有效参数*
参数:
-i [--image] : 原图片地址
-t [--tiles_dir] : 素材目录地址
-o [--outfile] : 输出文件地址 【可选】
"""
class TileProcessor:
def __init__(self, tiles_directory):
self.tiles_directory = tiles_directory
def __process_tile(self, tile_path):
try:
img = Image.open(tile_path)
# tiles must be square, so get the largest square that fits inside the image
w = img.size[0]
h = img.size[1]
min_dimension = min(w, h)
w_crop = (w - min_dimension) / 2
h_crop = (h - min_dimension) / 2
img = img.crop((w_crop, h_crop, w - w_crop, h - h_crop))
large_tile_img = img.resize((TILE_SIZE, TILE_SIZE), Image.ANTIALIAS)
small_tile_img = img.resize((int(TILE_SIZE / TILE_BLOCK_SIZE), int(TILE_SIZE / TILE_BLOCK_SIZE)),
Image.ANTIALIAS)
return (large_tile_img.convert('RGB'), small_tile_img.convert('RGB'))
except Exception as e:
logging.warning(e)
return (None, None)
def get_tiles(self):
large_tiles = []
small_tiles = []
logging.info('从 \'%s\' 获取图片素材...' % self.tiles_directory)
# search the tiles directory recursively
for root, subFolders, files in os.walk(self.tiles_directory):
for tile_name in files:
tile_path = os.path.join(root, tile_name)
large_tile, small_tile = self.__process_tile(tile_path)
logging.debug(large_tile)
logging.debug(small_tile)
if large_tile:
large_tiles.append(large_tile)
small_tiles.append(small_tile)
logging.info('读取素材 %s 完成.' % len(large_tiles))
return (large_tiles, small_tiles)
class TargetImage:
def __init__(self, image_path):
self.image_path = image_path
def get_data(self):
logging.info('处理主图片...')
img = Image.open(self.image_path)
w = img.size[0] * ENLARGEMENT
h = img.size[1] * ENLARGEMENT
large_img = img.resize((w, h), Image.ANTIALIAS)
w_diff = (w % TILE_SIZE) / 2
h_diff = (h % TILE_SIZE) / 2
# if necesary, crop the image slightly so we use a whole number of tiles horizontally and vertically
if w_diff or h_diff:
large_img = large_img.crop((w_diff, h_diff, w - w_diff, h - h_diff))
small_img = large_img.resize((int(w / TILE_BLOCK_SIZE), int(h / TILE_BLOCK_SIZE)), Image.ANTIALIAS)
image_data = (large_img.convert('RGB'), small_img.convert('RGB'))
logging.info('主图片处理完成.')
return image_data
class TileFitter:
def __init__(self, tiles_data):
self.tiles_data = tiles_data
def __get_tile_diff(self, t1, t2, bail_out_value):
diff = 0
for i in range(len(t1)):
# diff += (abs(t1[i][0] - t2[i][0]) + abs(t1[i][1] - t2[i][1]) + abs(t1[i][2] - t2[i][2]))
diff += ((t1[i][0] - t2[i][0]) ** 2 + (t1[i][1] - t2[i][1]) ** 2 + (t1[i][2] - t2[i][2]) ** 2)
if diff > bail_out_value:
# we know already that this isnt going to be the best fit, so no point continuing with this tile
return diff
return diff
def get_best_fit_tile(self, img_data):
best_fit_tile_index = None
min_diff = sys.maxsize
tile_index = 0
# go through each tile in turn looking for the best match for the part of the image represented by 'img_data'
for tile_data in self.tiles_data:
diff = self.__get_tile_diff(img_data, tile_data, min_diff)
# logging.info(diff)
if diff < min_diff:
min_diff = diff
best_fit_tile_index = tile_index
tile_index += 1
return best_fit_tile_index
def fit_tiles(work_queue, result_queue, tiles_data):
# this function gets run by the worker processes, one on each CPU core
tile_fitter = TileFitter(tiles_data)
while True:
try:
img_data, img_coords = work_queue.get(True)
if img_data == EOQ_VALUE:
break
tile_index = tile_fitter.get_best_fit_tile(img_data)
result_queue.put((img_coords, tile_index))
except KeyboardInterrupt:
pass
# let the result handler know that this worker has finished everything
result_queue.put((EOQ_VALUE, EOQ_VALUE))
class ProgressCounter:
def __init__(self, total):
self.total = total
self.counter = 0
def update(self):
self.counter += 1
sys.stdout.write(
"进度: %s%% %s" % ((100 * self.counter / self.total), "\r"))
# sys.stdout.write("Progress: %s%% %s" % (100 * self.counter / self.total, "\r"))
sys.stdout.flush()
class MosaicImage:
def __init__(self, original_img, outfile):
self.image = Image.new(original_img.mode, original_img.size)
self.x_tile_count = int(original_img.size[0] / TILE_SIZE)
self.y_tile_count = int(original_img.size[1] / TILE_SIZE)
self.total_tiles = self.x_tile_count * self.y_tile_count
self.outfile = outfile
def add_tile(self, tile_data, coords):
img = Image.new('RGB', (TILE_SIZE, TILE_SIZE))
img.putdata(tile_data)
self.image.paste(img, coords)
def save(self, path):
self.image.save(path)
def build_mosaic(result_queue, all_tile_data_large, original_img_large, outfile):
mosaic = MosaicImage(original_img_large, outfile)
active_workers = WORKER_COUNT
while True:
try:
img_coords, best_fit_tile_index = result_queue.get()
if img_coords == EOQ_VALUE:
active_workers -= 1
if not active_workers:
break
else:
tile_data = all_tile_data_large[best_fit_tile_index]
mosaic.add_tile(tile_data, img_coords)
except KeyboardInterrupt:
pass
mosaic.save(mosaic.outfile)
logging.info('============ 生成成功 ============')
def compose(original_img, tiles, outfile):
logging.info('生成图片中,按下 Ctrl-C 中断...')
original_img_large, original_img_small = original_img
tiles_large, tiles_small = tiles
mosaic = MosaicImage(original_img_large, outfile)
all_tile_data_large = list(map(lambda tile: list(tile.getdata()), tiles_large))
all_tile_data_small = list(map(lambda tile: list(tile.getdata()), tiles_small))
work_queue = Queue(WORKER_COUNT)
result_queue = Queue()
try:
# start the worker processes that will build the mosaic image
Process(target=build_mosaic, args=(result_queue, all_tile_data_large, original_img_large, outfile)).start()
# start the worker processes that will perform the tile fitting
for n in range(WORKER_COUNT):
Process(target=fit_tiles, args=(work_queue, result_queue, all_tile_data_small)).start()
progress = ProgressCounter(mosaic.x_tile_count * mosaic.y_tile_count)
for x in range(mosaic.x_tile_count):
for y in range(mosaic.y_tile_count):
large_box = (x * TILE_SIZE, y * TILE_SIZE, (x + 1) * TILE_SIZE, (y + 1) * TILE_SIZE)
small_box = (
x * TILE_SIZE / TILE_BLOCK_SIZE, y * TILE_SIZE / TILE_BLOCK_SIZE,
(x + 1) * TILE_SIZE / TILE_BLOCK_SIZE,
(y + 1) * TILE_SIZE / TILE_BLOCK_SIZE)
work_queue.put((list(original_img_small.crop(small_box).getdata()), large_box))
progress.update()
except KeyboardInterrupt:
logging.info('\nHalting, saving partial image please wait...')
finally:
# put these special values onto the queue to let the workers know they can terminate
for n in range(WORKER_COUNT):
work_queue.put((EOQ_VALUE, EOQ_VALUE))
def mosaic(img_path, tiles_path, outfile):
tiles_data = TileProcessor(tiles_path).get_tiles()
image_data = TargetImage(img_path).get_data()
compose(image_data, tiles_data, output)
if __name__ == '__main__':
logging.basicConfig(filename='mosaic.log',
format='%(asctime)s %(filename)s : %(levelname)s %(message)s',
level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler())
opts, args = getopt.gnu_getopt(sys.argv[1:], 'i:t:o:ts:tr:e:', ['image=', 'tiles_dir=', 'outfile=',""])
base_image = None
tiles_dir = None
output = None
for k, v in opts:
if k in ("-i", "--image"):
base_image = v
if k in ("-t", "--tiles_dir"):
tiles_dir = v
if k in ("-o", "--outfile"):
output = v
# base_image = None
# tiles_dir = None
for value in (base_image, tiles_dir):
if value is None:
logging.error(WARN_INFO)
sys.exit()
if output is None:
output = './mosaic.jpg'
mosaic(base_image, tiles_dir, output)
注!!!***
这里不是直接运行的!这里你要在终端使用!
**命令:python mosaic_v2.py -i "D:\image\pic.jpg" -t "D:\image"
程序原图:
效果图:
python实现马赛克拼图!的更多相关文章
- 利用python爬虫爬取图片并且制作马赛克拼图
想在妹子生日送妹子一张用零食(或者食物类好看的图片)拼成的马赛克拼图,因此探索了一番= =. 首先需要一个软件来制作马赛克拼图,这里使用Foto-Mosaik-Edda(网上也有在线制作的网站,但是我 ...
- 【Python还能干嘛】爬取微信好友头像完成马赛克拼图(千图成像)~
马赛克拼图 何谓马赛克拼图(千图成像),简单来说就是将若干小图片平凑成为一张大图,如下图路飞一样,如果放大看你会发现里面都是一些海贼王里面的图片. Our Tragets 爬取所有微信好友的头像
- python 游戏(滑动拼图Slide_Puzzle)
1. 游戏功能和流程图 实现16宫格滑动拼图,实现3个按钮(重置用户操作,重新开始游戏,解密游戏),后续难度,额外添加重置一次的按钮,解密算法的植入,数字改变为图片植入 游戏流程图 2. 游戏配置 配 ...
- python 游戏(记忆拼图Memory_Puzzle)
1. 游戏功能和流程图 实现功能:翻开两个一样的牌子就显示,全部翻开游戏结束,设置5种图形,7种颜色,游戏开始提示随机8个牌子 游戏流程图 2. 游戏配置 配置游戏目录 配置游戏(game_conf. ...
- 80个Python练手项目列表
80个Python练手项目列表 我若将死,给孩子留遗言,只留一句话:Repetition is the mother of all learning重复是学习之母.他们将来长大,学知识,技巧.爱情 ...
- 转:如何在ArcMap下将栅格图象矢量化的基本步骤 (对影像的校准和配准、栅格图象矢量化)
矢量对象是以矢量的形式,即用方向和大小来综合表示目标的形式描述的对象.例如画面上的一段直线,一个矩形,一个点,一个圆,一个填充的封闭区域--等等. 矢量图形文件就是由这些矢量对象组合而成的描述性文件. ...
- 马赛克是否无法逆转?Python简单消除,看片无忧!
图片水印,轻松去除 前段时间玩过了全民K歌,不知道大家是否玩过,还是做得挺好的,就我这嗓子都能唱出张学友的味道,其中更是有消除噪声的功能,就是朋友们都在吃鸡大叫,我在旁边唱歌依然不受影响. 既然声音可 ...
- Python: PS 滤镜--马赛克
本文利用 Python 实现PS 滤镜中的马赛克效果,具体的算法原理和效果可以参考之前的博客: http://blog.csdn.net/matrix_space/article/details/30 ...
- opencv马赛克python实现
最近要实现opencv视频打马赛克,在网上找了一下基本是C++的实现,好在原理一样,下面给出python实现. 原理和注意点,我都写在注释里了 import cv2 ##马赛克 def do_mosa ...
随机推荐
- QT5.2 Assistant-设置应用程序图标
在Qt助手(assistant.exe)搜索关键字"Setting the Application Icon"就可以看到在各种平台设置Qt程序图标的方法,包括QT支持的Win ...
- 数据结构与算法简记--Trie树
Trie树 概念 多叉树,节点为字符串中的单个字符. Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起. 将多个字符串按字符拆分插入Trie树,用于字符串查找,关键词提示等 举 ...
- php被遗忘的参数 pcntl
phpinfo () CTRL+ F–enable-pcntl今天居然可以用到.哈 狗屎运. 来自t00ls < ?php /******************************* *查 ...
- Neo4j基础入门
图数据库基础知识 图数据库以图这种数据结构为基础,可以保存任意种类的数据,以下图为基础,简单介绍Neo4j中的几个简单概念: 1.节点(Nodes) 表示图数据库的实体(entities),代表图数据 ...
- log4j 和 log4j2 在springboot中的性能对比
文章链接: https://pengcheng.site/2019/11/17/log4j-he-log4j2-zai-springboot-zhong-de-xing-neng-dui-bi/ 前言 ...
- javascript中var同时声明多个变量时的原理是什么?
<script> function show(){ var a=b=c=d=5; } show(); alert(a);//弹a时报错(not defined),而b.c.d都能弹出5 & ...
- linux 之文件重命名
没有专门的重命名 命令 用 mv a b 就可以重命名了 mv :move 移动文件(延伸功能:重命名,linux系统没有专门的重命名命令) 基本格式: 移动文件:mv 文件名 移动目的地文件名 重命 ...
- html iframe js frame
<iframe> 语法<iframe id="productList" src=""../common/emxTable.jsp?table= ...
- Javascript中的Date()对象
创建一个指定的事件对象 需要在构造函数中传递一个表示时间的字符串作为参数例:var d2=new Date("8/27/2019"); 如果直接使用构造函数创建一个Date对象,则 ...
- ASP.NET MVC 学习笔记之 MVC + EF中的EO DTO ViewModel
EO: Entity Object 就是EF中的实体类, 对EO的操作会对数据库产生影响. DTO: Data Transfer Object 数据传输对象.用于在各层之间传递数据的普通类,DTO有哪 ...