AdaGrad全称是Adaptive Gradient Algorithm,是标准Gradient Descent的又一个派生算法。标准Gradient Descent的更新公式为:

其中Learning Rate α对于Cost Function的各个feature都一样,但同一个α几乎不可能在各个feature上都表现完美,通常为了收敛,会选择较小的α。

而AdaGrad的主要思想是:在各个维度上使用不同的learning rate,从而加快函数收敛的速度。其公式为:

gt是t时刻目标函数的梯度,可以看到,依旧为各个feature设置了统一的α,但是通过历史梯度累计RMS作为分母来调节该learning rate。δ是一个很小的数例如10-7,仅仅为了分母不为0。

如果我们将等式右侧第二项看做一个整体。则标准Gradient Descent是,对t时刻梯度大的feature更新步子大,对t时刻梯度小的feature更新步子小。可以说Gradient Descent是衡量绝对大小的,但AdaGrad则不同,采取了“相对大与相对小”。使用当前时刻的梯度与历史梯度的RMS相比较,如果梯度变缓了,说明快要收敛了,那么步子调整的小一些;而如果梯度突然变大了,那证明参数需要大幅度更新了。

单AdaGrad算法虽然在凸函数(Convex Functions)上表现较好,但在非凸函数上却可能有局限。在深度学习训练中,Cost Function有可能会是很复杂的空间结构,有可能在某些平缓的结构上使用了很小的steps,但在某一时刻却有希望增大步伐。但上式的分母表示,优化的更新步伐和t时刻之前的所有时刻的梯度都相关,所以很有可能当算法希望增大步伐时,更新幅度已经衰减到很小,从而导致优化过程被困在某个局部最优点。

基于此,多大的Hinton教授提出了RMSProp,将AdaGrad和EMA结合起来。将上式分母的部分做成滑动的窗口,通过参数ρ来控制窗口的大小。从而,梯度的“相对大小”参照物,会丢弃遥远的历史,只与相邻窗口内的结构进行比较,来决定更新步幅的大小。梯度的EMA等于:

参数更新公式为:

AdaGrad Algorithm and RMSProp的更多相关文章

  1. L21 Momentum RMSProp等优化方法

    airfoil4755 下载 链接:https://pan.baidu.com/s/1YEtNjJ0_G9eeH6A6vHXhnA 提取码:dwjq 11.6 Momentum 在 Section 1 ...

  2. (转)分布式深度学习系统构建 简介 Distributed Deep Learning

    HOME ABOUT CONTACT SUBSCRIBE VIA RSS   DEEP LEARNING FOR ENTERPRISE Distributed Deep Learning, Part ...

  3. (转) An overview of gradient descent optimization algorithms

    An overview of gradient descent optimization algorithms Table of contents: Gradient descent variants ...

  4. 第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)

    在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐 ...

  5. An overview of gradient descent optimization algorithms

    原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimiz ...

  6. 基于MNIST数据的卷积神经网络CNN

    基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211 ...

  7. Momentum

    11.6 Momentum 在 Section 11.4 中,我们提到,目标函数有关自变量的梯度代表了目标函数在自变量当前位置下降最快的方向.因此,梯度下降也叫作最陡下降(steepest desce ...

  8. 第七章:网络优化与正则化(Part1)

    任何数学技巧都不能弥补信息的缺失. --科尼利厄斯·兰佐斯(Cornelius Lanczos) 匈牙利数学家.物理学家 文章相关 1 第七章:网络优化与正则化(Part1) 2 第七章:网络优化与正 ...

  9. RNN 入门教程 Part 4 – 实现 RNN-LSTM 和 GRU 模型

    转载 - Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano ...

随机推荐

  1. [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)

    [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...

  2. React项目 - 几种CSS实践

    前言团队在使用react时,不断探索,使用了很多不同的css实现方式,此篇blog总结了,react项目中常见的几种css解决方案:inline-style/radium/style-componen ...

  3. 山区建小学(区间dp+前缀和+预处理)

    [题目描述] 政府在某山区修建了一条道路,恰好穿越总共m个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两个相邻的村庄之间的距离为di(为正整数),其中,0 < i ...

  4. Spark 计算人员三度关系

    1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...

  5. vue报错TypeError: Cannot read property 'protocol' of undefined

    错误信息如下所示: isURLSameOrigin.js?3934:57 Uncaught (in promise) TypeError: Cannot read property 'protocol ...

  6. Maya2017下载安装与激活

    目录 1. 更多推荐 2. 下载地址 2.1. OneDrive 2.2. 百度云 3. 安装激活步骤 1. 更多推荐 其他Maya版本的下载与激活:https://www.cnblogs.com/c ...

  7. [SDOI2011]消防(贪心,图论,树的直径)

    [SDOI2011]消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情, ...

  8. dialog写进dll调用

    #ifdef DLG_WINDOW_API #define DLG_WINDOW_EXPORT __declspec(dllexport) #else #define DLG_WINDOW_EXPOR ...

  9. 使用Node,Vue和ElasticSearch构建实时搜索引擎

    (译者注:相关阅读:node.js,vue.js,Elasticsearch) 介绍 Elasticsearch是一个分布式的RESTful搜索和分析引擎,能够解决越来越多的用例. Elasticse ...

  10. CSS多列布局(栅格布局)

    一.多列布局 CSS3 可以将文本内容设计成像报纸一样的多列布局,如下实例: 代码如下(具体的解释也在代码中)浏览器支持表格中的数字表示支持该方法的第一个浏览器的版本号. 紧跟在数字后面的 -webk ...