【NOIP2016提高A组模拟9.15】Math
题目
分析
因为\((-1)^2=1\),
所以我们只用看\(\sum_{j=1}^md(i·j)\)的值模2的值就可以了。
易证,一个数x,只有当x是完全平方数时,d(x)才为奇数,否则为偶数。
那么设\(i=p*q^2\),p不包含任何平方因子,
要使\(i·j\)为完全平方数,则\(j=p*k^2\),
因为\(j<=m\)
所以j就有\(\sqrt{\dfrac{m}{p}}\)。
因此我们可以求出每个i对应的p来算出答案。
但对于每个i都求出p的话,时间复杂度为\(O(n\sqrt{n})\)
发现\(i=p*q^2\),当p固定时,q有很多种方案,
而\(\sqrt{\dfrac{m}{p}}\)也是固定的,
那么如果有一个i,p=i,那么
把这直接把所以是这个p的情况全部加入答案,
跳过并且这些所有的\(这个p*q^2\)。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const int N=10000005;
using namespace std;
long long zs[300000],n,m,ans;
bool bz[N];
int main()
{
memset(bz,true,sizeof(bz));
scanf("%lld%lld",&n,&m);
for(long long i=1;i<=n;i++)
{
if(!bz[i])
continue;
long long q=sqrt(n/i);
long long k=sqrt(m/i);
if(k%2)
ans-=q;
else
ans+=q;
for(int j=1;j<=q;j++)
bz[i*j*j]=false;
}
printf("%lld",ans);
}
【NOIP2016提高A组模拟9.15】Math的更多相关文章
- 【JZOJ4782】【NOIP2016提高A组模拟9.15】Math
题目描述 输入 输出 样例输入 3 5 样例输出 -1 数据范围 解法 观察式子,可以得知整个式子与d(i*j)的奇偶性有关. d(n)为奇数当且仅当n是完全平方数. 对于一个i,如果d(i*j) ( ...
- 【JZOJ4784】【NOIP2016提高A组模拟9.15】Map
题目描述 输入 输出 样例输入 4 4 2 1 2 2 3 3 2 3 4 1 2 1 4 样例输出 14 数据范围 样例解释 upd:保证原图连通. "不相交路径"的定义为不存在 ...
- 【JZOJ4783】【NOIP2016提高A组模拟9.15】Osu
题目描述 输入 输出 样例输入 4 2 1 2 2 2 0 2 3 0 0 4 2 0 样例输出 1 2 1 数据范围 样例解释 圆圈只在出现的时刻有效.即:时刻t_i时鼠标位置恰好在(x_i,y_i ...
- 【JZOJ4820】【NOIP2016提高A组模拟10.15】最大化
题目描述 输入 输出 样例输入 3 2 4 0 -10 8 -2 -2 样例输出 4 数据范围 解法 枚举两条扫描线,在这两条扫描线之间的矩阵,可以将之转化为一个序列b[i]=a[i][1..m]. ...
- 【JZOJ4819】【NOIP2016提高A组模拟10.15】算循环
题目描述 输入 输出 样例输入 167 198 样例输出 906462341 数据范围 解法 令f(n)=∑ni=1i,g(n)=∑ni=1i2 易得ans=∑ni=1∑mj=1f(n−i+1)∗f( ...
- NOIP2016提高A组模拟10.15总结
第一题,就是将原有的式子一步步简化,不过有点麻烦,搞了很久. 第二题,枚举上下边界,维护一个单调队列,二分. 比赛上没有想到,只打了个暴力,坑了80分. 第三题,贪心,最后的十多分钟才想到,没有打出来 ...
- 【NOIP2016提高A组模拟10.15】打膈膜
题目 分析 贪心, 先将怪物按生命值从小到大排序(显然按这个顺序打是最优的) 枚举可以发对少次群体攻击, 首先将所有的群体攻击发出去, 然后一个一个怪物打,当当前怪物生命值大于2,如果还有魔法值就放重 ...
- 【NOIP2016提高A组模拟10.15】最大化
题目 分析 枚举两个纵坐标i.j,接着表示枚举区域的上下边界, 设对于每个横坐标区域的前缀和和为\(s_l\),枚举k, 显然当\(s_k>s_l\)时,以(i,k)为左上角,(j,k)为右下角 ...
- 【NOIP2016提高A组模拟10.15】算循环
题目 分析 一步步删掉循环, 首先,原式是\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=i}^n\sum_{l=j}^m\sum_{p=i}^k\sum_{q=j}^l1\] 删 ...
随机推荐
- 自己实现一个list比较器 实现Comparator()接口
一:一个实体类 成员变量有名字,年龄,分数 )))))); List<User> list = new ArrayList<>(); list.add(user1); list ...
- miniui 请求遮罩mask不生效
通用写法: mini.mask({ el:document.body(作用对象) cls:样式 hetml:显示文本 }) 我的问题是,当前页面的遮罩无效不会显示,但是页面不能点击 问题原因,aj ...
- CentOS 7 卸载 mysql
查看是否安装 mysql rpm -qa | grep -i mysql yum list install mysql* 卸载 yum方式 yum remove mysql mysql-server ...
- AGC035 A - XOR Circle【分析】
题目传送门 题意简述: (就是连环的意思) 唔,这道题考场上写了个什么神仙做法,数据太水了居然过了: // #include<cstdio> #include<algorithm&g ...
- adobe Keychain mac
Keychain password access This question has been Answered. janec2070563 May 8, 2018 11:07 AM I consta ...
- [转帖]目标管理的S.M.A.R.T.理念
目标管理的S.M.A.R.T.理念 https://blog.csdn.net/gehantao/article/details/1593510 目标管理(MBO)是一种管理战略,它使用的是S ...
- 小记----采集之Xpath
一.XPATH简介 Xpath是XML路径语言,它是一种确定XML文档中某部分位置的语言 二.XPATH语法 XPATH使用路径表达式在XML文档中选取节点.节点是通过沿着路径或者step来选取 ...
- 20 亿的 URL 集合,如何快速判断其中一个?
假设遇到这样一个问题:一个网站有 20 亿 url 存在一个黑名单中,这个黑名单要怎么存?若此时随便输入一个 url,你如何快速判断该 url 是否在这个黑名单中?并且需在给定内存空间(比如:500M ...
- Failure to transfer org.apache.maven.plugins:maven-resources-plugin:pom:2.6 的解决办法
eclipse导入mavn工程报Failure to transfer org.apache.maven.plugins:maven-resources-plugin:pom:2.6 的解决办法: 错 ...
- 094、Swarm 中最重要的概念(Swarm01)
参考https://www.cnblogs.com/CloudMan6/p/7845365.html 从主机层面来看,Docker Swarm 管理的是 Docker Host 集群.所以先来讨论 ...