传送门

写在前面:为了保护正睿题目版权,这里不放题面,只写题解。


dlstql,wsl


  • A

\(10pts:\)

\(a=100,T=100\),对每个排列构造一个反的,一步到位即可。

\(20pts:\)

\(a=50\),构造\(1\)和所有元素交换的排列,实现交换\((v,u)\)可以令两者分别与\(1\)交换,选择排序即可。

\(40pts:\)

\(a=30\),构造前\(25\)个元素与\(1\)交换的排列,另有一个排列交换前\(25\)个与后\(25\)个元素。

\(a=20\)时可以分三块处理。

\(100pts:\)

考虑\(a=2\),步数不限时怎么做。

只需构造一个\(2-n\)的环,再构造一个\(1-2\)的交换。

每次可以把位置\(1\)上的数放到它在循环里的对应位置。

但是一步的期望是\(\frac{n}2\)次操作,实际步数无法承受。

考虑倍增。由于\(a=5\)的限制,难以二进制倍增,可以考虑三进制倍增。

【update:经过同学们反映,必须用dls的\(\{1,3,8,20\}\)才能获得满分】

一步的期望大约是\(4.5\)次操作,随机数据下可以通过。


  • B

欣赏一下swk的神奇错误:

\(\frac{1}n \sum(a_i-\frac 1n \sum a_i)^2=\frac{1}{n}(\sum a_i^2+\frac{(1-2n)(\sum a_i)^2}{n^2})\)

/cy/qiang

显然方差直接算是不可做的,考虑拆一下式子。

\(\frac{1}n \sum(a_i-\frac 1n \sum a_i)^2=\frac{1}{n}\sum(a_i^2-\frac {2a_i}n\sum a_i +\frac{1}{n^2}(\sum a_i)^2)=\frac 1n (\sum a_i^2-\frac{1}n (\sum a_i)^2)\)

即,对于一个确定的大小为\(n\)的集合,它的方差为\(\frac 1n (\sum a_i^2-\frac{1}n (\sum a_i)^2)\)。

如果只需要算一个方差,有上式就够用了。然而此处我们要算的是区间内所有子集的方差。

\(\frac 1n (\sum a_i^2-\frac{1}n (\sum a_i)^2)=\frac{n-1}{n^2}\sum a_i^2-\frac{1}{n^2}\sum_{i\not=j}a_ia_j\)

设每次求取区间长度为\(l\),枚举子集大小\(n\),考虑区间内每个\(a_i\)单独出现的次数,即\(l\)个数中选\(n\)个,其中\(a_i\)必选的方案数,等价于\(l-1\)个数中选\(n-1\)个的方案数。

同样,区间内每对\(a_i,a_j\)出现的次数为\(l-2\)个数中选\(n-2\)个的方案数。

由此得到长度为\(l\)的区间所有子集的方差和\(=\sum_{n=1}^{l}\frac{n-1}{n^2}(^{l-1}_{n-1})\sum a_i^2-\sum_{n=1}^l\frac{1}{n^2}(^{l-2}_{n-2})\sum_{i\not=j}a_ia_j\)。

发现枚举\(a_i,a_j\)比较困难,重新将其转化为完全平方的形式,得到\(\sum_{n=1}^{l}\frac{n-1}{n^2}(^{l-1}_{n-1})\sum a_i^2-\sum_{n=1}^l\frac{1}{n^2}(^{l-2}_{n-2})[(\sum a_i)^2-\sum a_i^2]\)。

整理得\(\sum a_i^2 \sum_{n=1}^l [\frac{n-1}{n^2}(^{l-1}_{n-1})+\frac{1}{n^2}(^{l-2}_{n-2})]+(\sum a_i)^2\sum_{n=1}^l\frac{1}{n^2}(^{l-2}_{n-2})\)。

发现原式被拆分成了形如\(x_l\sum a_i^2+y_l(\sum a_i)^2\)的形式,且\(x_l,y_l\)与序列形态无关,只与序列长度有关。现在原问题转化为两个子任务:维护区间和,区间平方和;迅速求解\(x_l,y_l\)。

第一个子任务可以用线段树简单维护。

将\(x_l\)拆分成三部分:①\(\sum_{n=1}^{l}\frac{1}{n}(^{l-1}_{n-1})-\)②\(\sum_{n=1}^{l}\frac{1}{n^2}(^{l-1}_{n-1})+\)③\(\sum_{n=1}^{l}\frac{1}{n^2}(^{l-2}_{n-2})\),则\(y_l\)是\(x_l\)的一部分。考虑分别求解。

①:\(\sum_{n=1}^{l}\frac{1}{n}(^{l-1}_{n-1})=\sum_{n=1}^{l}\frac{(l-1)!}{n!(l-n)!}=\sum_{n=1}^{l}\frac{1}{l}(^l_n)=\frac{2^l-1}{l}\)(注意\(n\)的枚举从\(1\)开始)

②:\(\sum_{n=1}^{l}\frac{1}{n^2}(^{l-1}_{n-1})=\frac 1l\sum_{n=1}^{l}\frac{1}{n}(^l_n)\),发现不是很好求解,可以使用差分的技巧。设\(P_l=\sum_{n=1}^{l}\frac{1}{n}(^l_n)\),则\(P_{l+1}-P_l=\frac 1{l+1}+\sum_{n=1}^{l}\frac{(^{l+1}_{~~n})-(^l_n)}{n}=\frac 1{l+1}+\sum_{n=1}^{l}\frac{1}{n}(^{~~~l}_{n-1})=\frac{1}{l+1}(1+\sum_{n=1}^l(^{l+1}_{~~~n}))=\frac{2^{l+1}-1}{l+1}\)

③:\(\sum_{n=1}^{l}\frac{1}{n^2}(^{l-2}_{n-2})=\frac{1}{l(l-1)}\sum_{n=1}^l\frac{n-1}{n}(^l_n)=\frac{1}{l(l-1)}(2^l-1-\sum_{n=1}^l\frac{1}{n}(^l_n))\),发现与②式形式相同,可以简单处理。


  • C

dls:昨晚睡迷糊了,所以写了两份错的题面。

\(50pts:\)

按右端点排序dp,考虑需要记录哪些状态。

发现需要记录:未被覆盖的区间中,右端点最靠左的;选中的区间中,右端点最靠右的。维护这两维状态,转移时枚举当前线段是否选,直接做就可以,复杂度\(O(n^3)\)。

\(100pts:\)

可以通过离散化,把端点改成两两不同的。

对每条线段求出\(l_i,r_i\),分别表示它左右两边第一条不能覆盖的线段。

可能会有右端点\(>r_i\),但是左端点较远所以被\(i\)覆盖的线段。发现它并不会影响答案,因为\(r_i\)完全被这条线段包含,因此任何覆盖\(r_i\)的线段都会覆盖它。

此时我们把每条线段转化成了一个区间,要求选出若干区间,使他们的并为\([1,n]\)。

然后dls翻车了两次233333

显然区间右端点单调不降。设\(f_{i,j}\)为考虑了前\(i\)个区间,最左的未被覆盖的点为\(j\)的方案数。

转移时,发现\(f_{i,[1,l_i)}\)无论选与不选都不会受到影响,\(f_{i,[l_i,r_i]}\)只有不选才会保留,\(f_{i,r_i+1}\)若选,则会从\(f_{i,[l_i,r_i]}\)处转移来。

因此需要维护一个数据结构,支持区间乘法,区间和,线段树即可。复杂度\(O(m\log n)\),虽然\(n\)很大,但是在\(\log\)上,所以可以通过。

ZROI 19.08.11模拟赛的更多相关文章

  1. ZROI 19.08.07模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "正睿从来没有保证,模拟赛的题目必须原创." "文案不是我写的,有问题找喵老师去."--蔡老师 ...

  2. ZROI 19.08.09模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(70pts:\) 维护一个栈,从一侧向另一侧扫描,如果新加入的元素与当前栈顶相同,则出栈,否则进栈.显然一个子串是括号序列,当 ...

  3. ZROI 19.08.06模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 今天正睿又倒闭了,从删库到跑路. 天祺鸽鸽txdy! A "不要像个小学生一样一分钟就上来问东西."--蔡老板 虽 ...

  4. ZROI 19.08.12模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "我发现问题的根源是大家都不会前缀和."--敦爷 A 敦爷spj写错了,差点把蒟蒻swk送走 \(50pts:\) ...

  5. ZROI 19.08.10模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(20pts:\) 枚举操作序列然后暴力跑,复杂度\(O(6^n)\). \([50,80]pts:\) 枚举改成dfs,每层操 ...

  6. ZROI 19.08.05模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(21pts:\) 随便枚举,随便爆搜就好了. \(65pts:\) 比较显然的dp,设\(f_{i,j,k}\)表示在子树\( ...

  7. ZROI 19.08.04模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "这应该是正睿OI历史上第一次差评破百的比赛." "这说明来正睿集训的人越来越多了." &qu ...

  8. ZROI 19.08.08模拟赛

    传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 首先恭喜swk今天翻车! "小心大样例演你."--天祺鸽鸽 果然swk今天被大样例演死了,天祺鸽鸽诚不欺我! A ...

  9. 2019.11.11 模拟赛 T2 乘积求和

    昨天 ych 的膜你赛,这道题我 O ( n4 ) 暴力拿了 60 pts. 这道题的做法还挺妙的,我搞了将近一天呢qwq 题解 60 pts 根据题目给出的式子,四层 for 循环暴力枚举统计答案即 ...

随机推荐

  1. Selenium 2自动化测试实战17(警告框处理)

    一.警告框处理 在WebDriver中处理JavaScript所生成的alert.confirm以及prompt十分简单,只需要使用switch_to_alert()方法定位到alert/confir ...

  2. 如何修改eclipse中的maven的仓库地址

    最近的有一个朋友问我如何修改eclipse的maven的本地仓库,我想了一下,这个玩意一般是不用修改的,主要是你本地安装的maven在哪个位置,一般的本地仓库位置在 C:\Users\username ...

  3. eclipse 引用静态库设置选项

    环境说明: 静态库文件项目:engine C++ 项目:server 在server项目中引用静态库的库文件libEngine.a 需要设置如图选项,才能引用静态库项目里的文件 主要设置: 1.inc ...

  4. c++ 运算符 循环

    运算符 算术运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 杂项运算符 一.算术运算符 二.关系运算符 三.逻辑运算符 四.位运算符 位运算符作用于位,并逐位执行操作 假设如果 A = 60,且 ...

  5. yum本地源和网络源的配置

    一.yum本地源 1. 删除YUM库[root@tianyun ~]# rm    -rf    /etc/yum.repos.d/* 2.挂载安装光盘(临时):[root@tianyun ~]# m ...

  6. CF-Div.3-B. Minimize the Permutation【模拟·需要清醒的脑子】

    题目传送门 根据字典序,是个人都会想到依次把目前最小的数尽量往前面移动,直到它不能再往前移动,或者已经到了它的期望位置(就是排列的那个位置 比如$i$就应该在位置$i$)为止. 所以我刚开始是这么写的 ...

  7. hbase 查看hfile文件

    emp表数据结构 hbase(main):098:0> scan 'emp' ROW COLUMN+CELL row1 column=mycf:depart, timestamp=1555846 ...

  8. C语言--- 高级指针2(结构体指针,数组作为函数参数)

    一.结构体指针 1. 什么是结构体指针?指向结构体变量的指针     结构体:     typedef  struct stu{                          char name[ ...

  9. layer弹出框的简易封装和使用

    1. 封装layer 下载layer绿色版和jquery引入页面 <!DOCTYPE html> <html lang="zh-CN"> . . . < ...

  10. ubuntu18下lamp虚拟路劲配置

    一.配置二级域名 修改hosts文件,模拟dns解析. 位置:/etc/hosts 添加 127.0.0.1  myweb.service.com 二.创建项目目录 apache默认目录是/var m ...