【LGP4714】「数学」约数个数和
众所周知,除数个数函数\(\sigma_0=I^2\),\(I\)就是狄利克雷卷积里的\(1\)函数
于是熟悉狄利克雷卷积的话很快就能看出我们要求的就是\(I\times I^{k}\),即\(I^{k+1}\),我们给这个函数起一个名字叫\(f^{k+1}\)
显然这个东西是积性函数,于是我们考虑一下指数次幂的\(f\)如何求
显然
\]
对于指数次幂\(p^m\)
\]
我们考虑一下快速求\(f^{k+1}(p^m)\),发现就是就是把这\(m\)次幂分配到\(k+1\)次减少的机会里去,当然最后不一定减少到\(0\),于是等价于把\(m\)个球分给\(k+2\)个盒子,允许为空,插板一下得知这个是\(\binom{k+m+1}{m+1}\),我们发现这个组合数非常好算,于是直接暴力就好了,由于又是积性函数,我们分解质因数之后直接合并就可以了
代码
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define min std::min
#define LL long long
const int maxn=1e7+5;
const int mod=998244353;
int f[maxn],p[maxn>>2],inv[505];
LL n,m;int T,ans=1;
inline int C(LL n,int m) {
int now=1;
for(re int i=n;i>=n-m+1;--i) now=1ll*now*(i%mod)%mod;
for(re int i=1;i<=m;i++) now=1ll*now*inv[i]%mod;
return now;
}
int main() {
scanf("%lld%lld",&n,&m);inv[1]=1;
for(re int i=2; i<505; i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
f[1]=1;T=std::sqrt(n)+1;T=min(T,maxn-1);
for(re int i=2;i<=T;i++) {
if(!f[i]) p[++p[0]]=i;
for(re int j=1;j<=p[0]&&p[j]*i<=T;j++) {
f[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
p[++p[0]]=1e9+7,p[++p[0]]=998244353,p[++p[0]]=1e9+9;
for(re int i=1;i<=p[0];i++) {
int t=0;
while(n%p[i]==0) n/=p[i],t++;
if(!t) continue;
ans=1ll*ans*C((t+m+1)%mod,t)%mod;
}
if(n!=1) ans=1ll*ans*C(m+2,1)%mod;
printf("%d\n",ans);
return 0;
}
【LGP4714】「数学」约数个数和的更多相关文章
- 洛谷 P4714 「数学」约数个数和 解题报告
P4714 「数学」约数个数和 题意(假):每个数向自己的约数连边,给出\(n,k(\le 10^{18})\),询问\(n\)的约数形成的图中以\(n\)为起点长为\(k\)的链有多少条(注意每个点 ...
- luogu 6月月赛 E 「数学」约数个数和
题面在这里! 第一眼感觉炒鸡水啊...只要把N质因数分解一下,因为k次约数相当于求k+2元一次方程的非负整数解,所以答案就是和每个质因子指数有关的一些组合数乘起来. 但是要用pillard's rho ...
- P4714 「数学」约数个数和
题解: 会了Miller-Rabin这题就很简单了 首先这种题很容易想到质因数分解 但是暴力根号算法是不行的 所以要用到 Miller-Rabin素数 https://blog.csdn.net/lt ...
- 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...
- 「10.8」simple「数学」·walk「树上直径」
A. Simple 本来以为很难,考场瞎推了推好像会了...... 想起小凯的诱惑,迷?? 首先$n$,$m$,$q$同除$gcd(n,m)$,显然$q$以内的数假如不是$gcd$的倍数,那么一定不能 ...
- Codeforces 626E Simple Skewness 「数学」「二分」
题意: 给你一堆无序数,寻找它的一个子堆,使得子堆的平均数减中位数最大. 数字的个数n<=2e5 0<=xi<=1e6. 思路: 首先可以证明这堆数一定是奇数个,证明方法是尝试在奇数 ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
- 「MoreThanJava」计算机发展史—从织布机到IBM
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...
- 「MoreThanJava」一文了解二进制和CPU工作原理
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...
随机推荐
- bzoj1061题解
[解题思路] 设类型i的志愿者,即第Si天~第Ti天工作的志愿者,共招募xi个,于是有不等式组Σxj≥Ai(Sj≤i≤Tj). 这样,题目就变成了求一组满足一次不等式组的xi,使ΣCixi最小,即标准 ...
- CommandLineToArgvW调EXE传入参数【转载】
#include <afxwin.h> // TODO: add your code here LPWSTR *szArglist = NULL; ; szArglist = Comma ...
- flutter 修饰盒子
decoration: BoxDecoration( borderRadius: BorderRadius.circular(), //圆角 gradient: RadialGradient( col ...
- Aliyun 安装NPM 总是3.5.2 解决方案
由于默认的命令 阿里云安装的 Node 是 8.x 版本 导致NPM 一直安装的都是 3.5.2 版本,死活升级不上去 最后手动安装指定版本解决 wget -qO- https://deb.nodes ...
- 极限学习机(Extreme Learning Machine)学习笔记
最近研究上了这个一个东西--极限学习机. 在很多问题中,我大多会碰到两个问题,一个是分类,另一个就是回归.简单来说,分类是给一串数打个标签,回归是把一串数变为一个数. 在这里我们需要处理的数据一般维度 ...
- ES6新的特性有哪些?
1.新增了块级作用域(let,const) 2.提供了定义类的语法糖(class) 3.新增了一种基本数据类型(Symbol) 4.新增了变量的解构赋值 5.函数参数允许设置默认值,引入了rest参数 ...
- java-day12
数据结构 常用的数据存储结构:栈,队列,数组,列表,红黑树. 栈:先进后出(入口和出口在用一侧) 队列:先进先出 数组: 查询快:因为数组的地址是连续的,通过数组的首地址找到数组中的元素. 增/删慢: ...
- sklearn参数优化
学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参数无法从数据中估计,只能靠人的经验进行指定,后一类参数就叫超参数 比如,支持向量机里的C,Kernel,gama,朴素贝叶斯里的 ...
- nio读取文件,输出文件
io流的一种: package com.cxy.ssp.Automic; import java.io.FileOutputStream; import java.io.IOException; im ...
- PokerNet-poker recognition: 扑克识别 (6)
文章目录 准备 最终结果 未来改进 准备 机器: Titan XP 12GB, 64GB RAM, 机器非常强,可靠. 下次有机会购买RTX 2080 Ti 试试 最终结果 错误率可以达到万分之一,非 ...