Euler Sums系列(六)
\[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\]
\(\Large\mathbf{Solution:}\)
Let \(S\) denote the sum. Then
\[\begin{align*}
S=\sum_{n=1}^\infty \frac{H_{2n}}{n(6n+1)} &= \sum_{n=1}^\infty\frac{H_{2n}}{n}\int_0^1 x^{6n}\mathrm dx \\
&= \int_0^1\left( \sum_{n=1}^\infty\frac{H_{2n}}{n}x^{6n}\right)\mathrm dx \tag{1}\end{align*}\]
Let \(\displaystyle f(x)=\sum_{n=1}^\infty \frac{H_n}{n}x^n\) where \(|x|<1\). It can be shown that
\[\begin{align*}
f(x)=\text{Li}_2(x)+\frac{1}{2}\ln^2(1-x) \tag{2}
\end{align*}\]
Then, we can write
\[\begin{align*}
\sum_{n=1}^\infty\frac{H_{2n}}{n}x^{6n} &= f\left(x^3\right)+f\left(-x^3\right) \\
&= \text{Li}_2\left(x^3\right)+\text{Li}_2\left(-x^3\right)+\frac{\ln^2\left(1-x^3\right)+\ln^2\left(1+x^3\right)}{2}\tag{3}
\end{align*}\]
Substitute (3) into (1) to get
\[\begin{align*}
S=\int_0^1 \left(\text{Li}_2\left(x^3\right)+\text{Li}_2\left(-x^3\right)+\frac{\ln^2\left(1-x^3\right)+\ln^2\left(1+x^3\right)}{2} \right)\mathrm dx \tag{4}
\end{align*}\]
Note that
\[\begin{align*}
\int_0^1\left( \text{Li}_2\left(x^3\right)+\text{Li}_2\left(-x^3\right)\right)\mathrm dx &= \frac{1}{2}\int_0^1\sum_{n=1}^\infty\frac{x^{6n}}{n^2} \mathrm dx \\
&=\frac{1}{2}\sum_{n=1}^\infty\frac{1}{n^2(6n+1)} \\
&= \frac{1}{2}\sum_{n=1}^\infty \left(\frac{1}{n^2}-\frac{6}{n}+\frac{36}{1+6n} \right) \\
&= \frac{1}{2}\left(\frac{\pi^2}{6} -6\psi_0\left(\frac{1}{6} \right)-6\gamma_0-36\right) \\
&= \frac{\pi^2}{12}+\frac{3\pi\sqrt{3}}{2}+6\ln 2+\frac{9}{2}\ln 3-18 \tag{5}
\end{align*}\]
\[\begin{align*}
\frac{1}{2}\int_0^1\ln^3\left(1-x^3\right)\mathrm dx &= \frac{1}{6}\int_0^1t^{-2/3}\ln^2(1-t)\mathrm dt \quad (t=x^3)\\
&= \frac{1}{6}\left[\frac{\partial^2}{\partial y^2} \mathrm{B}(x,y)\right]_{x=1/3,y=1} \\
&= \frac{\pi ^2}{8}-\frac{\sqrt{3} \pi }{2}+\frac{9}{2}+\frac{9}{8} \ln^2 3-\frac{9 \ln 3}{2}+\frac{1}{4} \sqrt{3} \pi \ln 3-\frac{\psi_1\left(\dfrac{4}{3}\right)}{2}\tag{6}
\end{align*}\]
Substitute (5) and (6) into equation (4) to get
\[S=-\frac{27}{2}+\frac{5\pi^2}{24}+\frac{9}{8}\ln^2 3+\frac{\pi\sqrt{3}}{4}(4+\ln 3)+6\ln 2-\frac{1}{2}\psi_1\left(\frac{4}{3} \right)+\frac{1}{2}\int_0^1 \ln^2(1+x^3)\mathrm{d}x\]
Now, it remains to calculate \(\displaystyle \int_0^1 \ln^2(1+x^3)\mathrm{d}x\).
According to Mathematica, it equals
\[\begin{align*}
\int_0^1 \ln^2(1+x^3)\mathrm{d}x&=18-\frac{5}{36}\pi ^{2}+\frac{\ln^{2}3}{4}+3\ln^{2}2-12\ln 2+\frac{\ln\dfrac{2187}{16}-12}{2\sqrt{3}}\pi +\mathrm{Li}_{2}\left ( -\frac{1}{3} \right )\\
&~~~-\left ( 1+i\sqrt{3} \right )\mathrm{Li}_{2}\left ( \frac{3-i\sqrt{3}}{6} \right )+\left ( 1-i\sqrt{3} \right )\mathrm{Li}_{2}\left ( \frac{3-i\sqrt{3}}{4} \right )\\
&~~~-\left ( 1-i\sqrt{3} \right )\mathrm{Li}_{2}\left ( \frac{3+i\sqrt{3}}{6} \right )+\left ( 1+i\sqrt{3} \right )\mathrm{Li}_{2}\left ( \frac{3+i\sqrt{3}}{4} \right )
\end{align*}\]
Hence, the final result is
\[\boxed{\displaystyle \begin{align*}
\sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}&=\color{blue}{-\frac{9}{2}+\frac{5}{36}\pi ^{2} +\frac{5}{4}\ln^23+\frac{3}{2}\ln^22-\frac{\ln 2}{\sqrt{3}}+\left ( \frac{7}{4\sqrt{3}}+\frac{\sqrt{3}}{4} \right )\ln 3}\\
&~~~\color{blue}{+\frac{1}{2}\Bigg\{\mathrm{Li}_{2}\left ( -\frac{1}{3} \right )-\psi _{1}\left ( \frac{4}{3} \right )-\left ( 1+i\sqrt{3} \right )\mathrm{Li}_{2}\left ( \frac{3-i\sqrt{3}}{6} \right )}\\
&~~~\color{blue}{+\left ( 1-i\sqrt{3} \right )\mathrm{Li}_{2}\left ( \frac{3-i\sqrt{3}}{4} \right )-\left ( 1-i\sqrt{3} \right )\mathrm{Li}_{2}\left ( \frac{3+i\sqrt{3}}{6} \right )}\\
&~~~\color{blue}{+\left ( 1+i\sqrt{3} \right )\mathrm{Li}_{2}\left ( \frac{3+i\sqrt{3}}{4} \right )\Bigg\}}
\end{align*}}\]
Euler Sums系列(六)的更多相关文章
- Euler Sums系列(五)
\[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...
- Euler Sums系列(一)
\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\] \(\Large\mathbf{Solution:}\) Let \[\mathcal{S}=\s ...
- Euler Sums系列(四)
\[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...
- Euler Sums系列(三)
\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...
- Euler Sums系列(二)
\[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...
- CSS 魔法系列:纯 CSS 绘制各种图形《系列六》
我们的网页因为 CSS 而呈现千变万化的风格.这一看似简单的样式语言在使用中非常灵活,只要你发挥创意就能实现很多比人想象不到的效果.特别是随着 CSS3 的广泛使用,更多新奇的 CSS 作品涌现出来. ...
- WCF编程系列(六)以编程方式配置终结点
WCF编程系列(六)以编程方式配置终结点 示例一中我们的宿主程序非常简单:只是简单的实例化了一个ServiceHost对象,然后调用open方法来启动服务.而关于终结点的配置我们都是通过配置文件来 ...
- SQL Server 2008空间数据应用系列六:基于SQLCRL的空间数据可编程性
原文:SQL Server 2008空间数据应用系列六:基于SQLCRL的空间数据可编程性 友情提示,您阅读本篇博文的先决条件如下: 1.本文示例基于Microsoft SQL Server 2008 ...
- R语言数据分析系列六
R语言数据分析系列六 -- by comaple.zhang 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候怎样下手分析,数据分析的第一步.探索性数据分析. 统计量,即统计学里面关注的数据集 ...
随机推荐
- UVA - 12333 Revenge of Fibonacci (大数 字典树)
The well-known Fibonacci sequence is defined as following: F(0) = F(1) = 1 F(n) = F(n − 1) + F(n − 2 ...
- 关于Git的右键菜单消失的处理
右键菜单 Git Bash Here window + R,输入regedit回车进入注册表 进入如下目录 HKEY_CLASSES_ROOT\Directory\Background\shell 在 ...
- Spring-JDBCTemplate介绍
一.Spring对不同的持久化支持: Spring为各种支持的持久化技术,都提供了简单操作的模板和回调 ORM持久化技术 模板类 JDBC org.springframework.jdbc.c ...
- 题解 AT3853 【Otoshidama】
题目传送门. 暴力枚举题. 分析 Step 1:定义两个变量,\(n\)和\(y\). int n,y; cin>>n>>y; Step 2:使用二重循环进行暴力枚举. for ...
- (四)tensorflow-基础(数据类型,张量操作,数学运算)
摘要: 1.数据类型:标量.向量.矩阵.张量 :数值精度:变量(张量) 2.张量操作:索引.切片.维度操作 3.数学运算:加减乘除(整除和余除):乘方(平方.开方.指数):自然底对数(任意底对数需要 ...
- python使用selenium驱动chromium防止浏览器自动升级失效!
python爬虫或者自动化项目中有时会用到selenium自动化测试框架,驱动chrom时由于谷歌浏览器自动升级,会造成驱动和浏览器版本不匹配问题,这时可以用到Chromium,这是谷歌推出用于开发目 ...
- mybatis(五):源码分析 - sqlsource创建流程
- AI赋能抗疫!顶象入选“中关村第二批抗疫新技术新产品新服务清单”
新型冠状病毒疫情仍未到达拐点,要打赢这场疫情攻坚战,不仅需要全国人民共同努力,还要使用科技的手段,用科学来守护大家的安全.对病毒的识别需要运用生物学技术进行基因测序,病患需要依靠医学能力进行救治.与此 ...
- 杭电oj————2057(java)
question:A+ B again 思路:额,没啥思路/捂脸,用java的long包里的方法,很简单,只是有几次WA,有几点要注意一下 注意:如果数字有加号要删除掉,这里用到了正则表达式“\\+” ...
- java注册界面及mysql连接
题目要求 完成注册界面及添加功能 1登录账号:要求由6到12位字母.数字.下划线组成,只有字母可以开头:(1分) 2登录密码:要求显示“• ”或“*”表示输入位数,密码要求八位以上字母.数字组成.(1 ...