Evaluate integral
$$\int_{0}^{1}{x^{-x}(1-x)^{x-1}\sin{\pi x}dx}$$
Well,I think we have
$$\int_{0}^{1}{x^{-x}(1-x)^{x-1}\sin{\pi x}dx}=\frac{\pi}{e}$$
 
and
 
$$\int_{0}^{1}{x^{x}(1-x)^{1-x}\sin{\pi x}dx}=\frac{e\pi}{24}$$ 
 
With such nice result of these integral,why isn't worth to evaluate it?
 
I found a solution about the second one,but I wonder it will work for the first one
Note
$$ S=\int_{0}^{1}{\sin{\pi x}x^{x}(1-x)^{1-x}dx}-\int_{0}^{1}{(1-x)e^{(i\pi+\ln{x}-\ln{(1-x)})x}dx} $$
Let $t=\ln{x}-\ln{(1-x)}$,$x=\frac{e^{t}}{1+e^{t}}$
Thus
\begin{align}S&=\int_{-\infty}^{+\infty}{\frac{1}{e^{t}+1}e^{(i\pi+t)\frac{e^{t}}{1+e^t}}\frac{e^{t}}{(1+e^{t})^{2}}dt}\\ &=\int_{-\infty+i\pi}^{-\infty-i\pi}{e^{\frac{te^{t}}{e^{t}-1} } \frac{e^{t}}{(e^{t}-1)^{3}}dt}\end{align}
Due to
$$ f(z)=e^{\frac{te^{t}}{e^{t}-1} } \frac{e^{t}}{(e^{t}-1)^{3}},\qquad D=\{Z\in C|-\pi\leq Im(z) \leq \pi\}$$
Therefore
$res(f,0)=-\frac{e}{24}$when $z=0$
with $ \zeta_{R}=\gamma_{R}+o_{R}+\tau_{R}$
$$\oint_{\zeta_{R}}{f(z)dz}=-2\pi i\cdot res(f,0)=\frac{2i\pi e}{24}$$
because
$$ \{z_{n}\}\subset D,\qquad |z_{n}|\rightarrow\infty $$
Therefore
$$ 2S=2\lim_{R\rightarrow \infty}\int_{\gamma_{R}}{f(z)dz} $$
gives
$$ \int_{0}^{1}{\sin{\pi x}x^{x}(1-x)^{1-x}dx}=Im(S)=\frac{e\pi}{24} $$
 
My friend tian_275461 told me he use a simliar method to deal with the first one to obtain the result $\frac{\pi}{e}$,but I am not figure it out.

第一个积分的解答:

Exactly the same method works for the other case.
$$\int_0^1 x^{-x} (1-x)^{x-1}\sin{\pi x} dx = \mathrm{Im}\left[\int_0^1 \frac{e^{(i\pi+\ln(1-x)-\ln x)x}}{1-x}dx\right]$$
Write $t=\ln((1-x)/x)$ and $z=t+i\pi$ as you did above to get
$$S = \int_0^1 \frac{e^{(i\pi+\ln(1-x)-\ln x)x}}{1-x}dx=\int_{-\infty+i\pi}^{\infty+i\pi} \frac{e^{\frac{z}{1-e^z}}}{1-e^z}dz$$
 
Then with $$f(z)=\frac{e^{\frac{z}{1-e^z}}}{1-e^z}$$
the only pole is at $z=0$, $res(f,0)=-\frac{1}{e}$ and in the limit $2S = \oint f(z)dz=-2\pi i \cdot res(f,0) = 2\pi i/e$ and your answer follows.

第二个积分的另一种求法:

This one can be done with "residue at infinity" calculation. This method is shown in the Example VI of http://en.wikipedia.org/wiki/Methods_of_contour_integration . 
 
First, we use $z^z = \exp ( z \log z )$ where $\log z$ is defined for $-\pi\leq \arg z < \pi$. 
 
For $(1-z)^{1-z} = \exp ( (1-z)\log (1-z) )$, we use $\log (1-z)$ defined for $0\leq \arg(1-z) <2\pi$. 
 
Then, let  $f(z)= \exp( i\pi z + z \log z + (1-z) \log (1-z) )$. 
 
As shown in the Ex VI in the wikipedia link, we can prove that $f$ is continuous on $(-\infty, 0)$ and $(1,\infty)$, so that the cut of $f(z)$ is $[0,1]$. 
 
We use the contour: (consisted of upper segment: slightly above $[0,1]$, lower segment: slightly below $[0,1]$, circle of small radius enclosing $0$, and circle of small radius enclosing $1$, that looks like a dumbbell having knobs at $0$ and $1$, can someone edit this and include a picture of it please? In fact, this is also the same contour as in Ex VI, with different endpoints.)
 
On the upper segment, the function $f$ gives, for $0\leq r \leq 1$, 
$$\exp(i\pi r) r^r (1-r)^{1-r} \exp( (1-r) 2\pi i ).$$ 
 
On the lower segment, the function $f$ gives, for $0\leq r \leq 1$, 
$$\exp(i\pi r) r^r(1-r)^{1-r}. $$
 
 
Since the functions are bounded, the integrals over circles vanishes when the radius tend to zero. 
 
Thus, the integral of $f(z)$ over the contour, is the integral over the upper and lower segments, which contribute to
 
$$\int_0^1 \exp(i\pi r) r^r (1-r)^{1-r} dr - \int_0^1 \exp(-i\pi r) r^r(1-r)^{1-r} dr$$
 
which is 
$$2i \int_0^1 \sin(\pi r) r^r (1-r)^{1-r} dr.$$
 
By the Cauchy residue theorem, the integral over the contour is
$$-2\pi i \textrm{Res}_{z=\infty} f(z) = 2\pi i \textrm{Res}_{z=0} \frac{1}{z^2} f(\frac 1 z).$$
 
From a long and tedious calculation of residue, it turns out that the value on the right is 
$$2i \frac{\pi e}{24}.$$
Then we have the result:
$$ \int_0^1 \sin(\pi r) r^r (1-r)^{1-r} dr = \frac{\pi e}{24}.$$
 
我们也可得到\begin{align*} \int_{0}^{1} e^{i \pi x} \, x^{x} (1-x)^{1-x} \, dx = i \, \frac{\pi e}{4!} \end{align*}

来自:http://math.stackexchange.com/questions/324647/integrate-int-01x-x1-xx-1-sin-pi-xdx

http://math.stackexchange.com/questions/958624/prove-that-int-01-sin-pi-xxx1-x1-x-dx-frac-pi-e24


[Torsten Carleman][1] $[2]$ proved in 1922 that
> $$
\sum_{n=1}^\infty\left(a_1a_2\cdots a_n\right)^{1/n} < e\sum_{n=1}^\infty a_n,
$$

where $a_n \geq 0$, $n=1,2,\dots$, and $0 < \sum_{n=1}^\infty a_n < \infty$. Thenceforth, this result is known as [Carleman's inequality][2]. There exists a number of refined versions of Carleman's original work $[3, 6]$. It has turned out that the following generalization is – from our point of view – important, which is proved by Yang $[7]$:
$$
\sum_{n=1}^\infty\left(a_1a_2\cdots a_n\right)^{1/n} < e\sum_{n=1}^\infty \left(1-\sum_{k=1}^6 \frac{b_k}{(n+1)^k}\right)a_n,
$$

with $b_1 = 1/2, b_2 = 1/24, b_3 = 1/48, b_4 = 73/5670, b_5 = 11/1280, b_6 = 1945/580608$.
On the last page of his paper, Yang $[7]$ conjectured that if
$$
\left(1+\frac{1}{x}\right)^x = e\left(1-\sum_{n=1}^\infty \frac{b_n}{(x+1)^n}\right), \quad x>0,
$$

then $b_n > 0$, $n=1,2,\dots.$ In fact, the constants $b_4$ and $b_6$ are not corrent in Yang's work, the correct values are $b_4 = 73/5760$ and $b_6 = 3625/580608$. Later, this conjecture was proved and discussed by Yang $[8]$, Gylletberg and Ping $[4]$, and Yue $[9]$. They are using the recurrence
$$
b_1 = \frac12, \quad b_n = \frac{1}{n}\left(\frac{1}{n+1} - \sum_{k=0}^{n-2} \frac{b_{n-k-1}}{k+2} \right), \quad n = 2,3,\dots.
$$
The recurrence is given in a somewhat more compact form in Finch's manuscript $[3]$, as the following:
> $$
b_0 = -1, \quad b_n = -\frac{1}{n}\sum_{k=1}^{n} \frac{b_{n-k}}{k+1}, \quad n = 1,2,\dots.
$$

The first ten values of the sequence are listed in the next table.
\begin{array} {|r|r|}
\hline
b_0 & -1 \\ \hline b_1 & 1/2 \\ \hline b_2 & 1/24 \\ \hline b_3 & 1/48 \\ \hline b_4 & 73/5760 \\ \hline b_5 & 11/1280 \\ \hline b_6 & 3625/580608 \\ \hline b_7 & 5525/1161216 \\ \hline b_8 & 5233001/1393459200 \\ \hline b_9 & 1212281/398131200 \\ \hline b_{10} & 927777937/367873228800 \\
\hline
\end{array}
The numerators are recorded as [A249276][3], and the denominators as [A249277][4] in the [OEIS][5]. I've calculated the $b_n$ sequence in the range $n=0,\dots,32$, the elements are listed [here][6].

The following theorem is proved in general in the paper by Hu and Mortici $[5]$, and for the special cases $n=0$ and $n=1$ in the paper by Alzer and Berg $[1]$.

For all integer $n \geq 0$, we have
> $$
\int_0^1 x^n\sin\left(\pi x\right)x^x\left(1-x\right)^{1-x}\,dx = b_{n+2}\pi e.
$$

The special case $n=0$ answers my question.

----------
**References**

1. H. Alzer, C. Berg, [*Some classes of completely monotonic functions*][7], Annales Academiæ Scientiarum Fennicæ Mathematica, 27, 2002, 445–460. ([pdf][8])
2. T. Carleman, [*Sur les fonctions quasi-analytiques*][9], Comptes rendus du Ve Congres des Mathematiciens Scandinaves, Helsinki (Helsingfors), 1922, 181–196.
3. S. Finch, [*Carleman's Inequality*][10], manuscript, 2013.
4. M. Gyllenberg, Y. Ping, [*On a conjecture by Yang*][11], Journal of Mathematical Analysis and Applications, 264(2), 2001, 687–690.
5. Y. Hu, C. Mortici, [*On the coefficients of an expansion of $(1+1/x)^x$ related to Carleman's inequality*][12], manuscript, arXiv:1401.2236, 2014.
6. M. Johansson, L.-E. Persson, A. Wedestig, [*Carleman's inequality - History, proofs and some new generalizations*][13], Journal of Inequalities in Pure and Applied Mathematics, 4(3), 2003.
7. X. Yang, [*On Carleman’s inequality*][14], Journal of Mathematical Analysis and Applications, 253(2), 2001, 691–694.
8. X. Yang, [*Approximations for constant $e$ and Their Applications*][15], Journal of Mathematical Analysis and Applications, 262(2), 2001, 651–659.
9. H. Yue, [*A Strengthened Carleman’s Inequality*][16], Communications in Mathematical Analysis, 1(2), 2006, 115–119. ([pdf][17])

----------
**Related**

This answer is related to the following stackexchange questions:

- [On the search for an explicit form of a particular integral][18]
- [Two curious “identities” on $x^x, e$, and $\pi$][19]
- [Evaluating an integral using real methods][20]

[1]: https://en.wikipedia.org/wiki/Torsten_Carleman
[2]: http://mathworld.wolfram.com/CarlemansInequality.html
[3]: http://oeis.org/A249276
[4]: http://oeis.org/A249277
[5]: http://oeis.org/
[6]: http://mathb.in/145272?key=677ade0f6738b4bc973f3955937b952544a82225
[7]: http://www.acadsci.fi/mathematica/Vol27/alzer.html
[8]: http://www.acadsci.fi/mathematica/Vol27/alzer.pdf
[9]: https://www.researchgate.net/publication/247679096_Sur_les_functions_quasi-analytiques
[10]: https://oeis.org/A219245/a219245.pdf
[11]: http://www.sciencedirect.com/science/article/pii/S0022247X01977029
[12]: https://arxiv.org/abs/1401.2236
[13]: https://www.researchgate.net/publication/237246073_Carleman%27s_inequality-history_proofs_and_some_new_generalizations
[14]: http://www.sciencedirect.com/science/article/pii/S0022247X00971555
[15]: http://www.sciencedirect.com/science/article/pii/S0022247X01975924
[16]: http://math-res-pub.org/cma/1/2/strengthened-carleman%E2%80%99s-inequality
[17]: https://www.ripublication.com/cma_files/cmav1n2_6.pdf
[18]: https://mathoverflow.net/questions/215816/on-the-search-for-an-explicit-form-of-a-particular-integral
[19]: https://math.stackexchange.com/questions/242587/two-curious-identities-on-xx-e-and-pi
[20]: https://mathoverflow.net/questions/226870/evaluating-an-integral-using-real-methods


This is something I am absolutely cautious to share, but I feel the need unveil anyway. I have lost some will to believe this is a significant result due to doubts expressed by other mathematicians who I have corresponded with, so this led me to construe this might not be important after all. I have read about these integrals supposedly popping up in the work of Ramanujan, though I have found no reliable source, and Bruce Berndt still has yet to get back to me.:/

This project started when I was curious what parametrizations would be needed to encapsulate impressive information about the following integrals:

\begin{align}
&\int_0^1 \sin(\pi x) x^x(1-x)^{1-x} \, dx &= \frac{\pi e}{24} \\
&\int_0^1 \frac{\sin(\pi x)}{x^x(1-x)^{1-x}}\, dx &= \frac{\pi }{e} \\
&\int_0^1 \frac{\sin(\pi x)}{x(1-x)}\frac{1}{x^x(1-x)^{1-x}}\, dx &= 2\pi
\end{align}

However, as it turns out, I was able to show they are related via the following theorem.

$\textbf{Theorem}$ For $m, q \in \mathbb{Z}$, and $m+q+1 \geq 0$,
$$ \int_0^1 x^m \sin\left(\pi q x \right) \left(x^x (1-x)^{1-x}\right)^q\ dx = (-1)^{q+1} \frac{d_{m+q+1}(q)}{(m+q+2)!_\mathbb{P}} \pi e^{q}$$
where $d_n(q)$ is a primitive polynomial of $\mathbb{Z}[x]$ of degree $n$, and $ n!_\mathbb{P}$ is the Bhargava factorial over the set of primes.

In addition, these rational numbers satisfy a neat recurrence relation, of which Carleman's inequality is a [special case][1] of:

$$\frac{d_{n}(q)}{(n+1)!_\mathbb{P}} = -\frac{q}{n} \sum_{k=1}^n \frac{d_{n-k}(q)}{(n-k+1)!_\mathbb{P}} \frac{1}{k+1}; \; d_0(q) = -1,\; \text{if} \,(q=0).$$

Using these results, we can unlock a whole class of crazy stuff:

\begin{align*}\sum_{j=1}^n A_j(1-\alpha_j)^{q\left(1-\frac{1}{\alpha_j}\right)}&= (-1)^q\int_0^1 \frac{\sin\left(\pi q x \right)}{\pi x} \frac{\left[x^x\left(1-x\right)^{1-x}\right]^q}{x^q} \prod_{j=1}^n \frac{1}{1-\alpha_j x}\ dx,
\end{align*}
\begin{align*}
A_j = \prod_{k=1, k\neq j}^n \frac{\alpha_j}{\alpha_j-\alpha_k}, \quad \alpha_j \in (0,1).
\end{align*}

Here are some special values:
\begin{align}
&\int_0^1 \frac{\sin\left( \pi x \right)}{ (1-x)\left[x^x\left(1-x\right)^{1-x}\right]} \ dx = \pi \quad \quad &\int_0^1 \frac{\sin\left( \pi x \right)}{(1-x^2)\left[x^x\left(1-x\right)^{1-x}\right]} \ dx &= \frac{5\pi}{8}
\end{align}

I don't want to reveal too much anyway. Enjoy!
[1]: http://www.people.fas.harvard.edu/~sfinch/csolve/crl.pdf


来源:https://math.stackexchange.com/questions/516001/what-is-the-most-surprising-result-that-you-have-personally-discovered/1884617#1884617


The Ramanujan Cos/Cosh Identity is stated [here](http://mathworld.wolfram.com/RamanujanCosCoshIdentity.html) as
$$\left[1+2\sum_{n=1}^{\infty}\frac{\cos n\theta}{\cosh n\pi}\right]^{-2}+
\left[1+2\sum_{n=1}^{\infty}\frac{\cosh n\theta}{\cosh n\pi}\right]^{-2}=
\frac{2\Gamma^4\left(\frac34\right)}{\pi}$$

Then there is a line:

> Equating coefficients of $\theta^0$, $\theta^4$, and $\theta^8$ gives
> some amazing identities for the hyperbolic secant.

Those identities are given [here](http://mathworld.wolfram.com/HyperbolicSecant.html).

So I have two questions:

1. How do we get those formulas from the Cos/Cosh identity?

2. Are there similar identities? (similar to Cos/cosh identity)


It will be helpful to start from an explanation of the origin and the proof of the Ramanujan identity. These are hidden (not very deeply) in the theory of elliptic functions.

Indeed, Jacobi elliptic function $\operatorname{dn}(z,k)$ [has Fourier series](http://dlmf.nist.gov/22.11)
$$\operatorname{dn}(z,k)=\frac{\pi}{2K}\left[1+2\sum_{n=1}^{\infty}\frac{\cos n\pi\frac{z}{K}}{\cosh n \pi \frac{K'}{K}}\right],$$
where $K(k)$ denotes complete elliptic integral and $K'(k)=K(\sqrt{1-k^2})$ the complementary one. The Ramanujan Cos/Cosh identity is thus equivalent to showing that
$$\operatorname{dn}^{-2}\left(\frac{K_1}{\pi}\theta,k_1\right)+\operatorname{dn}^{-2}\left(\frac{iK_1}{\pi}\theta,k_1\right)=\frac{8\Gamma^4\left(\frac34\right)K_1^2}{\pi^3},\tag{1}$$
where $k_1=\frac{1}{\sqrt2}$ is the first [elliptic integral singular value](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html) and $K_1:=K(k_1)=K'(k_1)$.

The right hand side of (1) is independent on $\theta$ and is readily shown to be equal to $2$ using e.g. formula (3) from the [same page](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html). Therefore it remains to show that for any $\sigma\in\mathbb{C}$ one has
$$\operatorname{dn}^{-2}\left(\sigma,k_1\right)+\operatorname{dn}^{-2}\left(i\sigma,k_1\right)=2.$$
I leave this last point to you as an exercise (hint: use [Jacobi's imaginary transformation](http://mathworld.wolfram.com/JacobisImaginaryTransformation.html)).

----------
Hopefully it is now clear that one can construct many generalizations of Ramanujan identity. Such constructions would involve two basic ingredients:

- Fourier series of elliptic functions,

- elliptic integral singular values.

Indeed, pick your favorite identity satisfied by the elliptic functions. The first ingredient will transform them into trigonometric series. The second one will allow to replace the elliptic modulus by algebraic numbers and the corresponding half-periods by misteriously-looking combinations of gamma functions of rational arguments.

----------
P.S. The first question is just Taylor expansion in $\theta$ (for instance, set $\theta=0$ in the Ramanujan identity and see what happens).

来源:https://math.stackexchange.com/questions/517409/extensions-of-ramanujans-cos-cosh-identity/955420#955420


I am Brian Diaz, and I am new to the math.stackexchange community.

I have been struggling with attempting to find a closed form of the following series:

$$ \varphi(\theta) = 1 + 2\sum_{n=1}^{\infty} \frac{\cosh(n\theta)}{\cosh(n\pi)} $$

Admittedly, I attempted to convert it to a "workable integral", but to no avail. Heck, in the process of converting it to an integral, I am not even sure interchanging the sum and the integral was valid. Nevertheless, this was my result.
$$\frac{1}{\pi}\int_{-\infty}^{\infty} \frac{\sin(x)}{\cosh(\theta) - \cos(x)} \frac{1}{\cosh(x)}dx $$

This was derived from a problem Ramanujan was working. For those who are interested in the source, you can visit http://mathworld.wolfram.com/RamanujanCosCoshIdentity.html. Note: Even if it does not have a closed form, I am still interested in valuable insight to the problem. In addition, I have been reported by my professor to consider applying residue theory, though he his not so sure what the result would be.

Thank you so much for your support, and I hope you do have a blessed day!


The closed form involves Jacobi elliptic function $\operatorname{dn}(z,k)$, which has [Fourier series](http://dlmf.nist.gov/22.11)
$$\operatorname{dn}(z,k)=\frac{\pi}{2K}\left[1+2\sum_{n=1}^{\infty}\frac{\cos n\pi\frac{z}{K}}{\cosh n \pi \frac{K'}{K}}\right],$$
where $K(k)$ denotes complete elliptic integral and $K'(k)=K(\sqrt{1-k^2})$ the complementary one.

Now if we denote $k_1=\frac{1}{\sqrt2}$ the first [elliptic integral singular value](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html) and
$$K_1:=K(k_1)=K'(k_1)=\frac{\Gamma^2\left(\frac14\right)}{4\sqrt{\pi}},$$
the sum can be expressed as
$$\boxed{\displaystyle \quad \varphi\left(\theta\right):=1+2\sum_{n=1}^{\infty}\frac{\cosh n\theta}{\cosh n \pi}=\frac{2K_1}{\pi}\,\operatorname{dn}\left(\frac{iK_1\theta}{\pi},k_1\right)\quad}$$

**P.S.** To check the answer with Mathematica, note that the latter uses $k^2$ instead of $k$ in the arguments of $\mathrm{EllipticK[}\cdot\mathrm{]}$ and $\mathrm{JacobiDN[}z,\cdot\mathrm{]}$. For example, $K_1$ is evaluated with $\mathrm{EllipticK[}\frac12\mathrm{]}$.

**P.P.S** This transforms the proof of Ramanujan cos/cosh identity into a one-line calculation involving [Jacobi imaginary transformation](http://mathworld.wolfram.com/JacobisImaginaryTransformation.html) for $\operatorname{dn}(z,k)$, as explained [here](https://math.stackexchange.com/a/955420/73025).

来源:https://math.stackexchange.com/questions/946071/a-problem-of-ramanujans-interest-closed-form-of-1-2-sum-n-1-infty-fra


Rather than relying on the consequences of Schanuel's conjecture, I set about using the same ideas Apery had used to construct integer arguments converging fast enough to show $\zeta(3)$ is irrational in a form Beukers had introduced. I'm sure someone out there can crack what I have so far.

I will be using the following facts:

>**Theorem 1**: Suppose the complex-valued function $$\begin{align}
f{(z)} = \begin{cases}
-\left(\frac{1}{e}(1-z)^{1-\frac{1}{z}} \right)^q, & z\neq 0 \\
-1, & z = 0
\end{cases}
\end{align}$$ has a power series with positive radius of convergence of the form
$$f(z) = \sum_{n=0}^\infty b_n(q) z^n$$
Then
$$b_n(q) = -\frac{q}{n} \sum_{k=1}^n \frac{b_{n-k}(q)}{k+1}, \quad b_0(q) = -1$$

Note that $b_n(q)$ is a polynomial of degree $n$.
>**Theorem 2**: Let $m,q \in \mathbb{Z}$ and $m+q+1 \geq 0$; then $$\int_0^1 x^m \sin(\pi q x) \left(x^x (1-x)^{1-x}\right)^q \ dx = (-1)^{q+1} \pi e^q b_{m+q+1}(q)$$

The above can be shown by applying contour integration and residue theorem to the above function.

> **Theorem 3**: For $n \in \mathbb{N} \cup \{0\}$, $\mathbb{P}$ be the set of primes, and let $$(n+1)!_\mathbb{P} = \prod_{p \in \mathbb{P}} p ^{\sum_{k\geq 0} \left\lfloor \frac{n}{(p-1)p^k} \right\rfloor}$$
> Then, for integer $q$, $(n+1)!_\mathbb{P} \cdot b_n(q)$ is an integer for $n \geq 0$.

This factorial like function is borrowed from Manjul Bhargava's work on the general factorial function.
>**Theorem 4** Let $n \in \mathbb{N} \cup \{0\}$; then $$(n+1)!_\mathbb{P}\sim e^{n(C-\gamma+o(1))}n^n$$ where $C = \sum_{p \in \mathbb{P}} \frac{\ln p }{(p-1)^2}$ and $\gamma$ is the Euler-Mascheroni constant.

If we let $P_n(x)$ be a polynomial of degree $n$ with integer coefficients and let $$I_n = \int_0^1 P_n(x) \left( \sin(\pi q x) \left( x^x (1-x)^{1-x}\right)^q -1\right) \ dx$$

We have the following inequality, in the form of Dirichlet's irrationality criterion,

$$0 < \left|C_n \pi e^q - D_n \right| = \left|(n+q+2)!_\mathbb{P} (n+1) I_n \right|$$

where $C_n, D_n \in \mathbb{Z}$. Of course, we can apply Theorem 4, and have something more familiar to work with.

>Question: Can we construct a polynomial $P_n(x)$ such that, for large $n$, $$\left|(n+q+2)!_\mathbb{P} (n+1) I_n \right| \to 0 \text{?}$$

If there does exist one, then, for $q \geq -2, q \neq 0$, the number $\pi e^q$ is irrational. Letting $q = 1, -1$, and the result follows.

I've been at this problem for some time, with no further progress. Frankly, I don't know what to do at all. If it helps, I've considered the shifted Legendre polynomials, as Beukers had done, though to no avail.

Most of what I've seen regarding the nature of constructing a polynomial is that it belongs to the family of *orthogonal polynomials*.

God bless.


This isn't really an answer as much as it is an "expanded" comment.

Consider, for integer $a$, $$P_n(x) = \frac{1}{n!} \frac{d^n}{d x^n} x^n (1-ax)^n = \sum_{m=0}^n \binom{n}{m} \binom{n+m}{m} (-ax)^m$$

Given $$I_n = \int_0^1 P_n(x) \left( \sin(\pi q x) (x^x(1-x)^{1-x})^q - 1\right) \ dx$$
We have
$$I_n \leq \int_0^1 P_n(x) \left( \sin(\pi q x) a_q - 1\right) \ dx$$ where $a_q = \max_{x\in (0,1)}\{(x^x(1-x)^{1-x})^q\}$. Furthermore, we have
$$\left|\int_0^1 P_n(x) \left( \sin(\pi q x) a_q - 1\right) \ dx \right|= \left|\int_0^1 \frac{1}{n!} \frac{d^n}{d x^n} x^n (1-ax)^n\left( \sin(\pi q x) a_q - 1\right) \ dx\right|$$

$$= \left|\frac{1}{a^{n+1}n!} \int_{(0,1)\cup(1,a)} \frac{d^n}{d x^n} x^n (1-x)^n\left( \sin\left(\frac{\pi q x}{a}\right) a_q - 1\right) \ dx\right| $$
$$\leq \left|\left(\frac{\pi q}{4a^2}\right)^n \frac{a_q}{n! a}+\frac{1}{n!a^{n+1}}\int_1^a \frac{d^n}{d x^n} x^n (1-x)^n\left( \sin\left(\frac{\pi q x}{a}\right) a_q - 1\right) \ dx\right| $$

Let $$S_n = \int_1^a \left( \sin\left(\frac{\pi q x}{a}\right) a_q - 1\right)\frac{d^n}{d x^n} x^n (1-x)^n \ dx$$

So that we have
$$ = \left|\left(\frac{\pi q}{4a^2}\right)^n \frac{a_q}{n! a}+\frac{S_n}{n!a^{n+1}}\right|$$

Now, observing the bound in question, applying Theorem 4, and letting $A = C - \gamma + o(1)$, we have
$$\left| (n+q+2)!_\mathbb{P} (n+1) I_n \right|<\left|e^{An} e^{q+1} n^n \left(1+\frac{q+1}{n}\right)^n \left(1+\frac{q+1}{n}\right)^{q+1}n^{q+1}(n+1)\left(\left(\frac{\pi q}{4a^2}\right)^n \frac{a_q}{n! a}+\frac{S_n}{n!a^{n+1}}\right) \right| $$

If we ignore the $S_n$ term, we have that

$$\left| e^{q+1} \frac{n^n}{e^n n!} \left(1+\frac{q+1}{n}\right)^n \left(1+\frac{q+1}{n}\right)^{q+1}\frac{n^{q+1}(n+1)}{b^n}\left(\frac{e^{A+1}\pi bq}{4a^2}\right)^n \frac{a_q}{a} \right|$$

where $b > 1 $. If we consider $a$ such that $ a^2 > \frac{e^{A+1}\pi bq}{4}$, and applying Stirling's approximation to the left-most term (-ish), for large $n$, then the whole expression above tends to $0$. Now, it is left to consider the $S_n$ term, though I have a bad feeling about it. :/

来源:https://mathoverflow.net/questions/226875/proving-the-irrationality-of-pi-e-and-pi-e

Pi和e的积分的更多相关文章

  1. 计算 $\dps{\int_0^\infty\frac{\sin^2x}{x^2}dx=\frac{\pi}{2}}$

    计算 $\dps{\int_0^\infty\frac{\sin^2x}{x^2}dx=\frac{\pi}{2}}$. 由分部积分, $$\bee\label{1}\bea \int_0^\inft ...

  2. simulink pi的方法产生锁相环

    pi方法就是比例积分方法,关于pi方法介绍参考http://www.elecfans.com/dianzichangshi/20120909287851.html 锁相环pi方法原理参考http:// ...

  3. CSDN markdown 编辑器 第四篇 LaTex语法

    Latex是为了写数学公式的. 嗯-但实际这样的语言的作用是为了排版的.数学公式仅仅是他的附加属性. 可是markdown引入这个全然是为了写公式.其它的Latex语法不支持. CSDN markdo ...

  4. matlab 向量场线积分

    syms t x y z F x=cos(t); y=sin(t); z=*sin(t)^-; F=[x^*y , (/)*x^,x*y ] ; %场函数 V=[diff(x,t),diff(y,t) ...

  5. PID控制算法

    PID控制算法 四轴如何起飞的原理 四轴飞行器的螺旋桨与空气发生相对运动,产生了向上的升力,当升力大于四轴的重力时四轴就可以起飞了. 四轴飞行器飞行过程中如何保持水平: 我们先假设一种理想状况:四个电 ...

  6. [实变函数]5.5 Riemann 积分和 Lebesgue 积分

    1 记号: 一元函数 $f$ 在 $[a,b]$ 上的 (1)Riemann 积分: $\dps{(R)\int_a^b f(x)\rd x}$; (2)Lebesgue 积分: $\dps{(L)\ ...

  7. [实变函数]5.6 Lebesgue 积分的几何意义 $\bullet$ Fubini 定理

    1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed ...

  8. HDU 3668 Volume (数学,积分)

    题意:求图中交叉圆柱体的体积! 析:大体思路很明确,把两个圆柱的体积加起来 减去中间公共部分的即可!第一步首先得想到公共部分是一个怎样的图形.这个在高数下册例题中有讲到! 中间实线部分就是第一卦限内的 ...

  9. HDU 2493 Timer 数学(二分+积分)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2493 题意:给你一个圆锥,水平放置,圆锥中心轴与地面平行,将圆锥装满水,在圆锥某一表面开一个小洞,流出来 ...

随机推荐

  1. Vue中的递归组件

    递归函数我们都再熟悉不过了,也就是函数自己调用自己.递归组件也是类似的,在组件的template内部使用组件自身.那递归组件有什么使用场景呢? 我们都知道树这个数据结构就是一种递归的结构,因此我们可以 ...

  2. 最新版的EF Core对UWP支持的怎么样

    为啥写这篇帖子呢?其实是因为翻微软的文档中心偶然翻到的,于是就出于好奇就试试了,看看用着怎么样. 以前没注意图片,所以我今天发现的时候,显示EF Core3.1支持standard2.0,于是就想试试 ...

  3. windows的启动、引导配置

    Win+S -> msconfig

  4. 00.JS前言

    前言: 学习一门编程语言的基本步骤(01)了解背景知识 1.了解背景知识   1)什么是 JavaScript 语言?     JavaScript 是一种轻量级的脚本语言.所谓“脚本语言”(scri ...

  5. #《H.264和MPEG-4视频压缩》# 一. 色彩空间

    多数的数字视频应用需要播放彩色的视频信号,所以需要捕获和重现颜色信息.一幅黑白图像的每一个采样点只需要一个像素表示明暗或亮度,而在彩色图像中至少需要3个像素来表示每个像素的色彩.表示亮度和色彩的不同方 ...

  6. c#学习心得(2)

    1.foreach与IEnumerable和IEnumerator的结合使用????? using System; using System.Collections; class Program { ...

  7. Asp.net core 3.1+EF Core2.2.6+Oracle.EntityFrameworkCore2.1.19连接Oracle数据库

    Asp.net Core 3.1+EF Core2.2.6+Oracle.EntityFrameworkCore2.1.19连接Oracle数据库 1.前言 本次主要采用Asp.net core3.1 ...

  8. 网站SEO中服务器优化的三个问题

    网站做好之后,站长第一件事就是想到去做SEO,但是有一些网站在做优化的时候,出现一些奇怪的情况,比如说优化已经不错的网站,排名突然就掉下来了:还有一些网站各项优化工作都是非常认真,但是排名却一直不上来 ...

  9. windows使用proxifier全局代理 - 配置可用; windows10 配置全局代理 走 socks5

    最近windows上需要配置全局代理 走 socks5,发现同类型的有 cow pcap 等解决方案,通过尝试发现还是proxifier 比较好用! 下载:https://www.proxifier. ...

  10. AT1219 歴史の研究[回滚莫队学习笔记]

    回滚莫队例题. 这题的意思大概是 设 \(cnt_i\) 为 l ~ r 这个区间 \(i\) 出现的次数 求\(m\) 次询问 求 l~r 的 max {\(a_i\) * \(cnt_i\)} \ ...