Pi和e的积分

第一个积分的解答:
第二个积分的另一种求法:
来自:http://math.stackexchange.com/questions/324647/integrate-int-01x-x1-xx-1-sin-pi-xdx
http://math.stackexchange.com/questions/958624/prove-that-int-01-sin-pi-xxx1-x1-x-dx-frac-pi-e24
[Torsten Carleman][1] $[2]$ proved in 1922 that
> $$
\sum_{n=1}^\infty\left(a_1a_2\cdots a_n\right)^{1/n} < e\sum_{n=1}^\infty a_n,
$$
where $a_n \geq 0$, $n=1,2,\dots$, and $0 < \sum_{n=1}^\infty a_n < \infty$. Thenceforth, this result is known as [Carleman's inequality][2]. There exists a number of refined versions of Carleman's original work $[3, 6]$. It has turned out that the following generalization is – from our point of view – important, which is proved by Yang $[7]$:
$$
\sum_{n=1}^\infty\left(a_1a_2\cdots a_n\right)^{1/n} < e\sum_{n=1}^\infty \left(1-\sum_{k=1}^6 \frac{b_k}{(n+1)^k}\right)a_n,
$$
with $b_1 = 1/2, b_2 = 1/24, b_3 = 1/48, b_4 = 73/5670, b_5 = 11/1280, b_6 = 1945/580608$.
On the last page of his paper, Yang $[7]$ conjectured that if
$$
\left(1+\frac{1}{x}\right)^x = e\left(1-\sum_{n=1}^\infty \frac{b_n}{(x+1)^n}\right), \quad x>0,
$$
then $b_n > 0$, $n=1,2,\dots.$ In fact, the constants $b_4$ and $b_6$ are not corrent in Yang's work, the correct values are $b_4 = 73/5760$ and $b_6 = 3625/580608$. Later, this conjecture was proved and discussed by Yang $[8]$, Gylletberg and Ping $[4]$, and Yue $[9]$. They are using the recurrence
$$
b_1 = \frac12, \quad b_n = \frac{1}{n}\left(\frac{1}{n+1} - \sum_{k=0}^{n-2} \frac{b_{n-k-1}}{k+2} \right), \quad n = 2,3,\dots.
$$
The recurrence is given in a somewhat more compact form in Finch's manuscript $[3]$, as the following:
> $$
b_0 = -1, \quad b_n = -\frac{1}{n}\sum_{k=1}^{n} \frac{b_{n-k}}{k+1}, \quad n = 1,2,\dots.
$$
The first ten values of the sequence are listed in the next table.
\begin{array} {|r|r|}
\hline
b_0 & -1 \\ \hline b_1 & 1/2 \\ \hline b_2 & 1/24 \\ \hline b_3 & 1/48 \\ \hline b_4 & 73/5760 \\ \hline b_5 & 11/1280 \\ \hline b_6 & 3625/580608 \\ \hline b_7 & 5525/1161216 \\ \hline b_8 & 5233001/1393459200 \\ \hline b_9 & 1212281/398131200 \\ \hline b_{10} & 927777937/367873228800 \\
\hline
\end{array}
The numerators are recorded as [A249276][3], and the denominators as [A249277][4] in the [OEIS][5]. I've calculated the $b_n$ sequence in the range $n=0,\dots,32$, the elements are listed [here][6].
The following theorem is proved in general in the paper by Hu and Mortici $[5]$, and for the special cases $n=0$ and $n=1$ in the paper by Alzer and Berg $[1]$.
For all integer $n \geq 0$, we have
> $$
\int_0^1 x^n\sin\left(\pi x\right)x^x\left(1-x\right)^{1-x}\,dx = b_{n+2}\pi e.
$$
The special case $n=0$ answers my question.
----------
**References**
1. H. Alzer, C. Berg, [*Some classes of completely monotonic functions*][7], Annales Academiæ Scientiarum Fennicæ Mathematica, 27, 2002, 445–460. ([pdf][8])
2. T. Carleman, [*Sur les fonctions quasi-analytiques*][9], Comptes rendus du Ve Congres des Mathematiciens Scandinaves, Helsinki (Helsingfors), 1922, 181–196.
3. S. Finch, [*Carleman's Inequality*][10], manuscript, 2013.
4. M. Gyllenberg, Y. Ping, [*On a conjecture by Yang*][11], Journal of Mathematical Analysis and Applications, 264(2), 2001, 687–690.
5. Y. Hu, C. Mortici, [*On the coefficients of an expansion of $(1+1/x)^x$ related to Carleman's inequality*][12], manuscript, arXiv:1401.2236, 2014.
6. M. Johansson, L.-E. Persson, A. Wedestig, [*Carleman's inequality - History, proofs and some new generalizations*][13], Journal of Inequalities in Pure and Applied Mathematics, 4(3), 2003.
7. X. Yang, [*On Carleman’s inequality*][14], Journal of Mathematical Analysis and Applications, 253(2), 2001, 691–694.
8. X. Yang, [*Approximations for constant $e$ and Their Applications*][15], Journal of Mathematical Analysis and Applications, 262(2), 2001, 651–659.
9. H. Yue, [*A Strengthened Carleman’s Inequality*][16], Communications in Mathematical Analysis, 1(2), 2006, 115–119. ([pdf][17])
----------
**Related**
This answer is related to the following stackexchange questions:
- [On the search for an explicit form of a particular integral][18]
- [Two curious “identities” on $x^x, e$, and $\pi$][19]
- [Evaluating an integral using real methods][20]
[1]: https://en.wikipedia.org/wiki/Torsten_Carleman
[2]: http://mathworld.wolfram.com/CarlemansInequality.html
[3]: http://oeis.org/A249276
[4]: http://oeis.org/A249277
[5]: http://oeis.org/
[6]: http://mathb.in/145272?key=677ade0f6738b4bc973f3955937b952544a82225
[7]: http://www.acadsci.fi/mathematica/Vol27/alzer.html
[8]: http://www.acadsci.fi/mathematica/Vol27/alzer.pdf
[9]: https://www.researchgate.net/publication/247679096_Sur_les_functions_quasi-analytiques
[10]: https://oeis.org/A219245/a219245.pdf
[11]: http://www.sciencedirect.com/science/article/pii/S0022247X01977029
[12]: https://arxiv.org/abs/1401.2236
[13]: https://www.researchgate.net/publication/237246073_Carleman%27s_inequality-history_proofs_and_some_new_generalizations
[14]: http://www.sciencedirect.com/science/article/pii/S0022247X00971555
[15]: http://www.sciencedirect.com/science/article/pii/S0022247X01975924
[16]: http://math-res-pub.org/cma/1/2/strengthened-carleman%E2%80%99s-inequality
[17]: https://www.ripublication.com/cma_files/cmav1n2_6.pdf
[18]: https://mathoverflow.net/questions/215816/on-the-search-for-an-explicit-form-of-a-particular-integral
[19]: https://math.stackexchange.com/questions/242587/two-curious-identities-on-xx-e-and-pi
[20]: https://mathoverflow.net/questions/226870/evaluating-an-integral-using-real-methods
This is something I am absolutely cautious to share, but I feel the need unveil anyway. I have lost some will to believe this is a significant result due to doubts expressed by other mathematicians who I have corresponded with, so this led me to construe this might not be important after all. I have read about these integrals supposedly popping up in the work of Ramanujan, though I have found no reliable source, and Bruce Berndt still has yet to get back to me.:/
This project started when I was curious what parametrizations would be needed to encapsulate impressive information about the following integrals:
\begin{align}
&\int_0^1 \sin(\pi x) x^x(1-x)^{1-x} \, dx &= \frac{\pi e}{24} \\
&\int_0^1 \frac{\sin(\pi x)}{x^x(1-x)^{1-x}}\, dx &= \frac{\pi }{e} \\
&\int_0^1 \frac{\sin(\pi x)}{x(1-x)}\frac{1}{x^x(1-x)^{1-x}}\, dx &= 2\pi
\end{align}
However, as it turns out, I was able to show they are related via the following theorem.
$\textbf{Theorem}$ For $m, q \in \mathbb{Z}$, and $m+q+1 \geq 0$,
$$ \int_0^1 x^m \sin\left(\pi q x \right) \left(x^x (1-x)^{1-x}\right)^q\ dx = (-1)^{q+1} \frac{d_{m+q+1}(q)}{(m+q+2)!_\mathbb{P}} \pi e^{q}$$
where $d_n(q)$ is a primitive polynomial of $\mathbb{Z}[x]$ of degree $n$, and $ n!_\mathbb{P}$ is the Bhargava factorial over the set of primes.
In addition, these rational numbers satisfy a neat recurrence relation, of which Carleman's inequality is a [special case][1] of:
$$\frac{d_{n}(q)}{(n+1)!_\mathbb{P}} = -\frac{q}{n} \sum_{k=1}^n \frac{d_{n-k}(q)}{(n-k+1)!_\mathbb{P}} \frac{1}{k+1}; \; d_0(q) = -1,\; \text{if} \,(q=0).$$
Using these results, we can unlock a whole class of crazy stuff:
\begin{align*}\sum_{j=1}^n A_j(1-\alpha_j)^{q\left(1-\frac{1}{\alpha_j}\right)}&= (-1)^q\int_0^1 \frac{\sin\left(\pi q x \right)}{\pi x} \frac{\left[x^x\left(1-x\right)^{1-x}\right]^q}{x^q} \prod_{j=1}^n \frac{1}{1-\alpha_j x}\ dx,
\end{align*}
\begin{align*}
A_j = \prod_{k=1, k\neq j}^n \frac{\alpha_j}{\alpha_j-\alpha_k}, \quad \alpha_j \in (0,1).
\end{align*}
Here are some special values:
\begin{align}
&\int_0^1 \frac{\sin\left( \pi x \right)}{ (1-x)\left[x^x\left(1-x\right)^{1-x}\right]} \ dx = \pi \quad \quad &\int_0^1 \frac{\sin\left( \pi x \right)}{(1-x^2)\left[x^x\left(1-x\right)^{1-x}\right]} \ dx &= \frac{5\pi}{8}
\end{align}
I don't want to reveal too much anyway. Enjoy!
[1]: http://www.people.fas.harvard.edu/~sfinch/csolve/crl.pdf
The Ramanujan Cos/Cosh Identity is stated [here](http://mathworld.wolfram.com/RamanujanCosCoshIdentity.html) as
$$\left[1+2\sum_{n=1}^{\infty}\frac{\cos n\theta}{\cosh n\pi}\right]^{-2}+
\left[1+2\sum_{n=1}^{\infty}\frac{\cosh n\theta}{\cosh n\pi}\right]^{-2}=
\frac{2\Gamma^4\left(\frac34\right)}{\pi}$$
Then there is a line:
> Equating coefficients of $\theta^0$, $\theta^4$, and $\theta^8$ gives
> some amazing identities for the hyperbolic secant.
Those identities are given [here](http://mathworld.wolfram.com/HyperbolicSecant.html).
So I have two questions:
1. How do we get those formulas from the Cos/Cosh identity?
2. Are there similar identities? (similar to Cos/cosh identity)
It will be helpful to start from an explanation of the origin and the proof of the Ramanujan identity. These are hidden (not very deeply) in the theory of elliptic functions.
Indeed, Jacobi elliptic function $\operatorname{dn}(z,k)$ [has Fourier series](http://dlmf.nist.gov/22.11)
$$\operatorname{dn}(z,k)=\frac{\pi}{2K}\left[1+2\sum_{n=1}^{\infty}\frac{\cos n\pi\frac{z}{K}}{\cosh n \pi \frac{K'}{K}}\right],$$
where $K(k)$ denotes complete elliptic integral and $K'(k)=K(\sqrt{1-k^2})$ the complementary one. The Ramanujan Cos/Cosh identity is thus equivalent to showing that
$$\operatorname{dn}^{-2}\left(\frac{K_1}{\pi}\theta,k_1\right)+\operatorname{dn}^{-2}\left(\frac{iK_1}{\pi}\theta,k_1\right)=\frac{8\Gamma^4\left(\frac34\right)K_1^2}{\pi^3},\tag{1}$$
where $k_1=\frac{1}{\sqrt2}$ is the first [elliptic integral singular value](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html) and $K_1:=K(k_1)=K'(k_1)$.
The right hand side of (1) is independent on $\theta$ and is readily shown to be equal to $2$ using e.g. formula (3) from the [same page](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html). Therefore it remains to show that for any $\sigma\in\mathbb{C}$ one has
$$\operatorname{dn}^{-2}\left(\sigma,k_1\right)+\operatorname{dn}^{-2}\left(i\sigma,k_1\right)=2.$$
I leave this last point to you as an exercise (hint: use [Jacobi's imaginary transformation](http://mathworld.wolfram.com/JacobisImaginaryTransformation.html)).
----------
Hopefully it is now clear that one can construct many generalizations of Ramanujan identity. Such constructions would involve two basic ingredients:
- Fourier series of elliptic functions,
- elliptic integral singular values.
Indeed, pick your favorite identity satisfied by the elliptic functions. The first ingredient will transform them into trigonometric series. The second one will allow to replace the elliptic modulus by algebraic numbers and the corresponding half-periods by misteriously-looking combinations of gamma functions of rational arguments.
----------
P.S. The first question is just Taylor expansion in $\theta$ (for instance, set $\theta=0$ in the Ramanujan identity and see what happens).
I am Brian Diaz, and I am new to the math.stackexchange community.
I have been struggling with attempting to find a closed form of the following series:
$$ \varphi(\theta) = 1 + 2\sum_{n=1}^{\infty} \frac{\cosh(n\theta)}{\cosh(n\pi)} $$
Admittedly, I attempted to convert it to a "workable integral", but to no avail. Heck, in the process of converting it to an integral, I am not even sure interchanging the sum and the integral was valid. Nevertheless, this was my result.
$$\frac{1}{\pi}\int_{-\infty}^{\infty} \frac{\sin(x)}{\cosh(\theta) - \cos(x)} \frac{1}{\cosh(x)}dx $$
This was derived from a problem Ramanujan was working. For those who are interested in the source, you can visit http://mathworld.wolfram.com/RamanujanCosCoshIdentity.html. Note: Even if it does not have a closed form, I am still interested in valuable insight to the problem. In addition, I have been reported by my professor to consider applying residue theory, though he his not so sure what the result would be.
Thank you so much for your support, and I hope you do have a blessed day!
The closed form involves Jacobi elliptic function $\operatorname{dn}(z,k)$, which has [Fourier series](http://dlmf.nist.gov/22.11)
$$\operatorname{dn}(z,k)=\frac{\pi}{2K}\left[1+2\sum_{n=1}^{\infty}\frac{\cos n\pi\frac{z}{K}}{\cosh n \pi \frac{K'}{K}}\right],$$
where $K(k)$ denotes complete elliptic integral and $K'(k)=K(\sqrt{1-k^2})$ the complementary one.
Now if we denote $k_1=\frac{1}{\sqrt2}$ the first [elliptic integral singular value](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html) and
$$K_1:=K(k_1)=K'(k_1)=\frac{\Gamma^2\left(\frac14\right)}{4\sqrt{\pi}},$$
the sum can be expressed as
$$\boxed{\displaystyle \quad \varphi\left(\theta\right):=1+2\sum_{n=1}^{\infty}\frac{\cosh n\theta}{\cosh n \pi}=\frac{2K_1}{\pi}\,\operatorname{dn}\left(\frac{iK_1\theta}{\pi},k_1\right)\quad}$$
**P.S.** To check the answer with Mathematica, note that the latter uses $k^2$ instead of $k$ in the arguments of $\mathrm{EllipticK[}\cdot\mathrm{]}$ and $\mathrm{JacobiDN[}z,\cdot\mathrm{]}$. For example, $K_1$ is evaluated with $\mathrm{EllipticK[}\frac12\mathrm{]}$.
**P.P.S** This transforms the proof of Ramanujan cos/cosh identity into a one-line calculation involving [Jacobi imaginary transformation](http://mathworld.wolfram.com/JacobisImaginaryTransformation.html) for $\operatorname{dn}(z,k)$, as explained [here](https://math.stackexchange.com/a/955420/73025).
Rather than relying on the consequences of Schanuel's conjecture, I set about using the same ideas Apery had used to construct integer arguments converging fast enough to show $\zeta(3)$ is irrational in a form Beukers had introduced. I'm sure someone out there can crack what I have so far.
I will be using the following facts:
>**Theorem 1**: Suppose the complex-valued function $$\begin{align}
f{(z)} = \begin{cases}
-\left(\frac{1}{e}(1-z)^{1-\frac{1}{z}} \right)^q, & z\neq 0 \\
-1, & z = 0
\end{cases}
\end{align}$$ has a power series with positive radius of convergence of the form
$$f(z) = \sum_{n=0}^\infty b_n(q) z^n$$
Then
$$b_n(q) = -\frac{q}{n} \sum_{k=1}^n \frac{b_{n-k}(q)}{k+1}, \quad b_0(q) = -1$$
Note that $b_n(q)$ is a polynomial of degree $n$.
>**Theorem 2**: Let $m,q \in \mathbb{Z}$ and $m+q+1 \geq 0$; then $$\int_0^1 x^m \sin(\pi q x) \left(x^x (1-x)^{1-x}\right)^q \ dx = (-1)^{q+1} \pi e^q b_{m+q+1}(q)$$
The above can be shown by applying contour integration and residue theorem to the above function.
> **Theorem 3**: For $n \in \mathbb{N} \cup \{0\}$, $\mathbb{P}$ be the set of primes, and let $$(n+1)!_\mathbb{P} = \prod_{p \in \mathbb{P}} p ^{\sum_{k\geq 0} \left\lfloor \frac{n}{(p-1)p^k} \right\rfloor}$$
> Then, for integer $q$, $(n+1)!_\mathbb{P} \cdot b_n(q)$ is an integer for $n \geq 0$.
This factorial like function is borrowed from Manjul Bhargava's work on the general factorial function.
>**Theorem 4** Let $n \in \mathbb{N} \cup \{0\}$; then $$(n+1)!_\mathbb{P}\sim e^{n(C-\gamma+o(1))}n^n$$ where $C = \sum_{p \in \mathbb{P}} \frac{\ln p }{(p-1)^2}$ and $\gamma$ is the Euler-Mascheroni constant.
If we let $P_n(x)$ be a polynomial of degree $n$ with integer coefficients and let $$I_n = \int_0^1 P_n(x) \left( \sin(\pi q x) \left( x^x (1-x)^{1-x}\right)^q -1\right) \ dx$$
We have the following inequality, in the form of Dirichlet's irrationality criterion,
$$0 < \left|C_n \pi e^q - D_n \right| = \left|(n+q+2)!_\mathbb{P} (n+1) I_n \right|$$
where $C_n, D_n \in \mathbb{Z}$. Of course, we can apply Theorem 4, and have something more familiar to work with.
>Question: Can we construct a polynomial $P_n(x)$ such that, for large $n$, $$\left|(n+q+2)!_\mathbb{P} (n+1) I_n \right| \to 0 \text{?}$$
If there does exist one, then, for $q \geq -2, q \neq 0$, the number $\pi e^q$ is irrational. Letting $q = 1, -1$, and the result follows.
I've been at this problem for some time, with no further progress. Frankly, I don't know what to do at all. If it helps, I've considered the shifted Legendre polynomials, as Beukers had done, though to no avail.
Most of what I've seen regarding the nature of constructing a polynomial is that it belongs to the family of *orthogonal polynomials*.
God bless.
This isn't really an answer as much as it is an "expanded" comment.
Consider, for integer $a$, $$P_n(x) = \frac{1}{n!} \frac{d^n}{d x^n} x^n (1-ax)^n = \sum_{m=0}^n \binom{n}{m} \binom{n+m}{m} (-ax)^m$$
Given $$I_n = \int_0^1 P_n(x) \left( \sin(\pi q x) (x^x(1-x)^{1-x})^q - 1\right) \ dx$$
We have
$$I_n \leq \int_0^1 P_n(x) \left( \sin(\pi q x) a_q - 1\right) \ dx$$ where $a_q = \max_{x\in (0,1)}\{(x^x(1-x)^{1-x})^q\}$. Furthermore, we have
$$\left|\int_0^1 P_n(x) \left( \sin(\pi q x) a_q - 1\right) \ dx \right|= \left|\int_0^1 \frac{1}{n!} \frac{d^n}{d x^n} x^n (1-ax)^n\left( \sin(\pi q x) a_q - 1\right) \ dx\right|$$
$$= \left|\frac{1}{a^{n+1}n!} \int_{(0,1)\cup(1,a)} \frac{d^n}{d x^n} x^n (1-x)^n\left( \sin\left(\frac{\pi q x}{a}\right) a_q - 1\right) \ dx\right| $$
$$\leq \left|\left(\frac{\pi q}{4a^2}\right)^n \frac{a_q}{n! a}+\frac{1}{n!a^{n+1}}\int_1^a \frac{d^n}{d x^n} x^n (1-x)^n\left( \sin\left(\frac{\pi q x}{a}\right) a_q - 1\right) \ dx\right| $$
Let $$S_n = \int_1^a \left( \sin\left(\frac{\pi q x}{a}\right) a_q - 1\right)\frac{d^n}{d x^n} x^n (1-x)^n \ dx$$
So that we have
$$ = \left|\left(\frac{\pi q}{4a^2}\right)^n \frac{a_q}{n! a}+\frac{S_n}{n!a^{n+1}}\right|$$
Now, observing the bound in question, applying Theorem 4, and letting $A = C - \gamma + o(1)$, we have
$$\left| (n+q+2)!_\mathbb{P} (n+1) I_n \right|<\left|e^{An} e^{q+1} n^n \left(1+\frac{q+1}{n}\right)^n \left(1+\frac{q+1}{n}\right)^{q+1}n^{q+1}(n+1)\left(\left(\frac{\pi q}{4a^2}\right)^n \frac{a_q}{n! a}+\frac{S_n}{n!a^{n+1}}\right) \right| $$
If we ignore the $S_n$ term, we have that
$$\left| e^{q+1} \frac{n^n}{e^n n!} \left(1+\frac{q+1}{n}\right)^n \left(1+\frac{q+1}{n}\right)^{q+1}\frac{n^{q+1}(n+1)}{b^n}\left(\frac{e^{A+1}\pi bq}{4a^2}\right)^n \frac{a_q}{a} \right|$$
where $b > 1 $. If we consider $a$ such that $ a^2 > \frac{e^{A+1}\pi bq}{4}$, and applying Stirling's approximation to the left-most term (-ish), for large $n$, then the whole expression above tends to $0$. Now, it is left to consider the $S_n$ term, though I have a bad feeling about it. :/
来源:https://mathoverflow.net/questions/226875/proving-the-irrationality-of-pi-e-and-pi-e
Pi和e的积分的更多相关文章
- 计算 $\dps{\int_0^\infty\frac{\sin^2x}{x^2}dx=\frac{\pi}{2}}$
计算 $\dps{\int_0^\infty\frac{\sin^2x}{x^2}dx=\frac{\pi}{2}}$. 由分部积分, $$\bee\label{1}\bea \int_0^\inft ...
- simulink pi的方法产生锁相环
pi方法就是比例积分方法,关于pi方法介绍参考http://www.elecfans.com/dianzichangshi/20120909287851.html 锁相环pi方法原理参考http:// ...
- CSDN markdown 编辑器 第四篇 LaTex语法
Latex是为了写数学公式的. 嗯-但实际这样的语言的作用是为了排版的.数学公式仅仅是他的附加属性. 可是markdown引入这个全然是为了写公式.其它的Latex语法不支持. CSDN markdo ...
- matlab 向量场线积分
syms t x y z F x=cos(t); y=sin(t); z=*sin(t)^-; F=[x^*y , (/)*x^,x*y ] ; %场函数 V=[diff(x,t),diff(y,t) ...
- PID控制算法
PID控制算法 四轴如何起飞的原理 四轴飞行器的螺旋桨与空气发生相对运动,产生了向上的升力,当升力大于四轴的重力时四轴就可以起飞了. 四轴飞行器飞行过程中如何保持水平: 我们先假设一种理想状况:四个电 ...
- [实变函数]5.5 Riemann 积分和 Lebesgue 积分
1 记号: 一元函数 $f$ 在 $[a,b]$ 上的 (1)Riemann 积分: $\dps{(R)\int_a^b f(x)\rd x}$; (2)Lebesgue 积分: $\dps{(L)\ ...
- [实变函数]5.6 Lebesgue 积分的几何意义 $\bullet$ Fubini 定理
1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed ...
- HDU 3668 Volume (数学,积分)
题意:求图中交叉圆柱体的体积! 析:大体思路很明确,把两个圆柱的体积加起来 减去中间公共部分的即可!第一步首先得想到公共部分是一个怎样的图形.这个在高数下册例题中有讲到! 中间实线部分就是第一卦限内的 ...
- HDU 2493 Timer 数学(二分+积分)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2493 题意:给你一个圆锥,水平放置,圆锥中心轴与地面平行,将圆锥装满水,在圆锥某一表面开一个小洞,流出来 ...
随机推荐
- 前后端API交互如何保证数据安全性?(转)
前言 前后端分离的开发方式,我们以接口为标准来进行推动,定义好接口,各自开发自己的功能,最后进行联调整合.无论是开发原生的APP还是webapp还是PC端的软件,只要是前后端分离的模式,就避免不了调用 ...
- Vue中的递归组件
递归函数我们都再熟悉不过了,也就是函数自己调用自己.递归组件也是类似的,在组件的template内部使用组件自身.那递归组件有什么使用场景呢? 我们都知道树这个数据结构就是一种递归的结构,因此我们可以 ...
- Tomcat 核心配置
tomcat的核心配置在conf/server.xml中. <Server> 根元素 <Server>即Catalina Servlet组件. <Server por ...
- NIO、多路复用的终极奥义
1.现在要让有限的系统资源发挥更大的效率,一个最直接的方式就是进行资源复用,比如线程资源复用. 2.线程资源复用的一个最有效的方式就是使用事件驱动模型进行异步调用. 3.Reactor模型就是基于事件 ...
- 一行代码解决MacBook Pro安装VSCode没有应用图标问题
笔者今天升级了VSCode,安装完后发现Dock(程序坞)没有VSCode的图标了,导致切换应用非常不方便. 具体情况就像下面这张图,VSCode明明开着,但是在Dock找不到VSCode了. 解决办 ...
- kthrotlds(WatchDogs变种)查杀方法
病毒现象 服务器出现卡顿.CPU飙升 以下为WatchDogs的判断方式及其命令:存在恶意进程watchdogs: ps -ef | grep watchdogs存在恶意进程ksoftirqds: p ...
- Demrystv
Determined Energetic Motivated Reliable Yes Stick To Victory
- 退役记——CCC2020&CCO2020
我叫吴佳诚,一个曾在福建师大附中就读的oier,2019年7月份我来到多伦多就读于Langstaff Secondary School 我的常用id有:Johnson_Wu,温词 竞赛经历: 2018 ...
- sql关系型运算符优先级高到低为:not >and> or
今天在做项目的时候发现一个查询的结果不太对. 随后拿出sql仔细端详一番,where条件中发现一个条件本应该是 …… xx in (‘13’,‘14’)……,却写成了…… xx = ‘13’ or x ...
- ssh 或 putty 连接linux报错解决方法
由于当天多次输入错误密码,ssh和putty就连接不上了,纠结了很久解决问题 ssh连接提示错误:server unexpectedly closed network connection putty ...