HDU 3068 最长回文 (Manacher最长回文串)
回文就是正反读都是一样的字符串,如aba, abba等
两组case之间由空行隔开(该空行不用处理)
字符串长度len <= 110000
题意:模板题,求最长回文子串的长度,字符串长度有11W,可以用manacher算法,注意输入的时候如果写成while(scanf("%s", a))会tle,应该写成while(scanf("%s", a) == 1)
manacher(马拉车)算法:复杂度O(n)
作用:给出一个字符串,求它的最长回文子串(的长度),求具体的串可以在模板上改一改
1.将字符串之间插入串中不可能有的字符,如将a a b a b a a b处理成 $ # a # a # b # a # b # a # a # b #,
一个回文串是对称的,既然对称,就一定有那个“对称轴”,对于长度为奇数的回文,它的对称轴是一个字符,对于长度为偶数的回文串,它的对称轴是两个字符。为了方便处理,将所有回文串的对称轴变为一个字符,可以如上插入不相关字符,这样连上刚插入的字符,原串就变成了奇数长度。 最前面的 '$' 是为了防止溢出(我也不太懂)
2.设数组Mp[i]为以i为中心的回文串的半径长度,
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ma[i] $ # a # a # b # a # b # a # a # b #
mp[i] 0 0 1 2 1 0 3 1 7 ...
如此可以观察到mp[i]也代表 原串中 以i为中心的回文串的长度 ! 所以最长回文串的长度就是mp数组中的最大值了
3.求mp数组
用i将整个ma数组遍历一遍,在遍历的过程中维护一个已知的最长回文串,这个回文串要求它的右边界最靠右、右边界相同的话中心最靠左,
以下转载于https://www.felix021.com/blog/read.php?2040
该算法增加两个辅助变量(其实一个就够了,两个更清晰)id和mx,其中 id 为已知的 {右边界最大} 的回文子串的中心,mx则为id+mp[id],也就是这个子串的右边界。
然后可以得到一个非常神奇的结论,这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。就是这个串卡了我非常久。实际上如果把它写得复杂一点,理解起来会简单很多:
if (mx - i > mp[j])
mp[i] = mp[j];
else /* mp[j] >= mx - i */
mp[i] = mx - i; // mp[i] >= mx - i,取最小值,之后再匹配更新。
当然光看代码还是不够清晰,还是借助图来理解比较容易。
当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。
当 P[j] >= mx - i 的时候,以S[j]为中心的回文子串不一定完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能老老实实去匹配了。
对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了。
于是代码如下:
int mp[1000], mx = 0, id = 0;
memset(mp, 0, sizeof(mp));
for (i = 1; s[i] != '\0'; i++) {
p[i] = mx > i ? min(mp[2*id-i], mx-i) : 1;
while (s[i + mp[i]] == s[i - mp[i]]) mp[i]++;
if (i + mp[i] > mx) {
mx = i + mp[i];
id = i;
}
}
//找出mp[i]中最大的
整个manacher算法就是这些,另外贴一下该题目的代码,也是manacher的模板,模板取自上海大学kuangbin
#include<cstdio>
#include<cstring>
#include<algorithm>
#define clr(a, x) memset(a, x, sizeof(a))
typedef long long ll;
typedef long double ld;
using namespace std;
const int maxn = 110011;
char ma[maxn * 2];
int mp[maxn * 2];
void manacher(char s[], int len){
int l = 0;
ma[l++] = '$';
ma[l++] = '#';
for(int i = 0 ; i < len; i++){
ma[l++] = s[i];
ma[l++] = '#';
}
ma[l] = 0;
int mx = 0, id = 0;
for(int i = 0; i < l; i++){
mp[i] = mx > i ? min(mp[2*id - i],mx - i): 1;
while(ma[i + mp[i]] == ma[i - mp[i]])mp[i]++;
if(i + mp[i] > mx){
mx = i + mp[i];
id = i;
}
}
}
int main(){
char s[maxn];
while(scanf("%s", s) == 1){
int len = strlen(s);
manacher(s, len);
int ans = 0;
for(int i = 0; i < 2 * len + 2; i++)
ans = max(ans, mp[i] -1);
printf("%d\n", ans);
}
return 0;
}
HDU 3068 最长回文 (Manacher最长回文串)的更多相关文章
- hdu 3068 最长回文 manacher算法(视频)
感悟: 首先我要Orz一下qsc,我在网上很难找到关于acm的教学视频,但偶然发现了这个,感觉做的很好,链接:戳戳戳 感觉这种花费自己时间去教别人的人真的很伟大. manacher算法把所有的回文都变 ...
- HDU - 3068 最长回文(manacher)
HDU - 3068 最长回文 Time Limit: 2000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Subm ...
- hdu 3068 最长回文 (Manacher算法求最长回文串)
参考博客:Manacher算法--O(n)回文子串算法 - xuanflyer - 博客频道 - CSDN.NET 从队友那里听来的一个算法,O(N)求得每个中心延伸的回文长度.这个算法好像比较偏门, ...
- HDU 3068 最长回文( Manacher模板题 )
链接:传送门 思路:Manacher模板题,寻找串中的最长回文子串 /***************************************************************** ...
- HDU 3068 (Manacher) 最长回文
求一个字符串的最长子串,Manacher算法是一种O(n)的算法,很给力! s2[0] = '$',是避免在循环中对数组越界的检查. 老大的代码: http://www.cnblogs.com/Big ...
- 最长回文子串(百度笔试题和hdu 3068)
版权所有.所有权利保留. 欢迎转载,转载时请注明出处: http://blog.csdn.net/xiaofei_it/article/details/17123559 求一个字符串的最长回文子串.注 ...
- hdu 3068 最长回文(manachar求最长回文子串)
题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...
- hdu_3068 最长回文(Manacher算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Time Limit: 4000/2000 MS (Java/Others) M ...
- Manacher 算法(hdu 3068 && hdu 3294)
今天打算补前晚 BC 的第二题,发现要用到能在 O(n) 时间求最大回文子串长度的 Manacher 算法,第一次听,于是便去百度了下,看了大半天,总算能看懂了其思想,至于他给出的代码模板我没能完全看 ...
- 【BZOJ-2342】双倍回文 Manacher + 并查集
2342: [Shoi2011]双倍回文 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1799 Solved: 671[Submit][Statu ...
随机推荐
- 19.python中os模块的常见用法
常见函数列表 os.sep:取代操作系统特定的路径分隔符 os.name:指示你正在使用的工作平台.比如对于Windows,它是'nt', 而对于Linux/Unix用户,它是'posix'. os. ...
- 详解Spring IoC容器
一.Spring IoC容器概述 1.依赖反转(依赖注入):依赖对象的获得被反转了. 如果合作对象的引用或依赖关系的管理由具体对象来完成,会导致代码的高度耦合和可测试性的降低,这对复杂的面向对象系统的 ...
- python的list()函数
list()函数将其它序列转换为 列表 (就是js的数组). 该函数不会改变 其它序列 效果图一: 代码一: # 定义一个元组序列 tuple_one = (123,','abc') print( ...
- 7月17日刷题记录 分治Getting!循环比赛日程表
通过数:1 ┭┮﹏┭┮ qdoj.xyz 1053 分治-循环比赛日程表 其实今天晚上留给编程的时间并不多,做出一道... 不过收获还是非常大的 毕竟本人从来没有学习过分治算法,今天竟然攻克了我人生中 ...
- 【C_Language】---C文件学习
---恢复内容开始--- 又看了一遍文件的知识点了,断断续续已经看了2-3遍,也就这次花了点时间做了一下总结,以后我想都不会再去翻书了,哈哈. 1. 基于缓冲区的文件操作2. 打开关闭文件3. 单个字 ...
- Django-视图&网址
前言 Django第一篇简单的介绍了环境搭建与创建Django项目的两种方式,以及如何启动服务,在前端访问HelloWorld地址,这篇内容首先学习一下Django项目中的各个模块的用途及Django ...
- 20190925Java课堂记录(二)
1. testrandom public class test2{ public static void main(String[] args) { int[] n=new int [1001]; n ...
- LeetCode 第17题--电话号码的组合(DFS)
1. 题目 2.题目分析与思路 3.代码 1. 题目 输入:"23" 输出:["ad", "ae", "af", &qu ...
- 【javaScript】加减乘除的精确计算
在js中使用"+"."-"等符号进行运算会出现很大的误差,所以需要自己创建函数进行精确运算. //说明:javascript的加法结果会有误差,在两个浮点数相加 ...
- set集合迭代
1.迭代遍历 Set<String> set = new HashSet<String>(); Iterator<String> it = set.iterator ...