Flink系统之Table API 和 SQL
Flink提供了像表一样处理的API和像执行SQL语句一样把结果集进行执行。这样很方便的让大家进行数据处理了。比如执行一些查询,在无界数据和批处理的任务上,然后将这些按一定的格式进行输出,很方便的让大家像执行SQL一样简单。
今天主要写的东西分为如下几个方面,然后遵循着下边几个方面进行展开:
1. Flink的不同API的层级梗概。
2. FlinkSQL的编程的步骤。
3. Flink编程的例子。
一、 Flink有着不同级别的API,不同级别的API方便不同用户进行处理。普通用户使用Datastream以及Dataset进行程序编写,我们可以在其更高的基础上使用Table API以及SQL,这也是Flink的强大之处,可以像使用处理表一样处理数据。如果想研究的更高可以看更底层的东西。
| SQL | High-level Language |
| Table API | Declarative DSL |
| Datastream / Dataset API | Core API |
| Stateful Stream Processing |
Low-level building block (streams, state, [event] time) |
二、 Flink的Table API 和 SQL编程步骤如下:
1) 创建一个TableEnvironment表环境用于后续使用。TableEnvironment是 SQL 和 Table API的核心概念,它用于设置执行所需要的数据属性,和ExecutionEnvironment类似,它主要负责:
a) 注册表数据源,从内部或者外部来源。
b) 执行相应的SQL语句。
c) 注册自定义集数。
d 将结果集进行扫描和写入到目标数据源。
e) 相同的environment可以执行相应的join unin操作。
2)接下来,咱们看一下如何注册数据源,注意不同的Flink版本有不同的实现,但是核心的内容是不变的:
a) 可以直接从数据集里进行注册。比如 tableEnvironment.registerDataSet()。
b) 在一个已经存在的Table中直接执行scan或者select,那么会生成一个新的Table,也就是数据可以从已有的Table中再次获取,Table t = tableEnv.scan("x").select("a, b,c")。
c) 可以是TableSource, 也就是从不同的文件、数据库、消息系统进行读取。 比如csv文件,TableSource csvSource = new CsvTableSource("path/to/file")。
3)读取完数据后进行处理,处理完之后要存储起来,那么需要Sink(存储)到文件或者数据库、消息系统等。
a) 比如Sink到CSV文件。 TableSink csvSink = new TableCSVSink("path/to/sink", ..)。
b) Sink为指定字段句和类型到CSV文件中。
指定表字段: String[] fieldNames = {"fild1", "filed2", "field3"};
指定字段类型: TypeInformation[] fieldTypes = {Types.INT, Types.STRING, Types.LONG};
指定表名和csv文件:tableEnv.registerTableSink("CsvSinkTable", fieldNames, fieldTypes, csvSink);
三、接下来,看一下真实的例子。
1)从给定的单词和单词的个数中统计一下,每个单词出现的数据,使用SQL语句进行实现查询统计。完整的样例如下(注意,不同的FLink版本实现上有稍微的差异):
package myflink.sql; import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.BatchTableEnvironment; public class WordCountSQL { public static void main(String[] args) throws Exception { ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
BatchTableEnvironment tEnv = BatchTableEnvironment.getTableEnvironment(env); DataSet<WC> input = env.fromElements(
WC.of("hello", 1),
WC.of("hqs", 1),
WC.of("world", 1),
WC.of("hello", 1)
);
//注册数据集
tEnv.registerDataSet("WordCount", input, "word, frequency"); //执行SQL,并结果集做为一个新表
Table table = tEnv.sqlQuery("SELECT word, SUM(frequency) as frequency FROM WordCount GROUP BY word"); DataSet<WC> result = tEnv.toDataSet(table, WC.class); result.print(); } public static class WC {
public String word; //hello
public long frequency; //创建构造方法,让flink进行实例化
public WC() {} public static WC of(String word, long frequency) {
WC wc = new WC();
wc.word = word;
wc.frequency = frequency;
return wc;
} @Override
public String toString() {
return "WC " + word + " " + frequency;
}
} }
输出的结果为,和我们想的结果是一样的。
WC world 1
WC hello 2
WC hqs 1
2)接下来的例子会复杂一些,从一个txt文件中读取数据,txt文件中包含id, 人字, 书名,价格信息。然后将数据注册成一个表,然后将这个表的结果进行统计,按人名统计出来这个人买书所花费的钱,将结果sink到一个文件中。上代码。
package myflink.sql; import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.Types;
import org.apache.flink.table.api.java.BatchTableEnvironment;
import org.apache.flink.table.sinks.CsvTableSink;
import org.apache.flink.table.sinks.TableSink; public class SQLFromFile { public static void main(String[] args) throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); BatchTableEnvironment tableEnv = BatchTableEnvironment.getTableEnvironment(env); env.setParallelism(1);
//读取文件
DataSource<String> input = env.readTextFile("test.txt");
//将读取到的文件进行输出
input.print();
//转换为DataSet
DataSet<Orders> inputDataSet = input.map(new MapFunction<String, Orders>() {
@Override
public Orders map(String s) throws Exception {
String[] splits = s.split(" ");
return Orders.of(Integer.valueOf(splits[0]), String.valueOf(splits[1]), String.valueOf(splits[2]), Double.valueOf(splits[3]));
}
});
//转换为table
Table order = tableEnv.fromDataSet(inputDataSet);
//注册Orders表名
tableEnv.registerTable("Orders", order);
Table nameResult = tableEnv.scan("Orders").select("name");
//输出一下表
nameResult.printSchema(); //执行一下查询
Table sqlQueryResult = tableEnv.sqlQuery("select name, sum(price) as total from Orders group by name order by total desc");
//查询结果转换为DataSet
DataSet<Result> result = tableEnv.toDataSet(sqlQueryResult, Result.class);
result.print(); //以tuple的方式进行输出
result.map(new MapFunction<Result, Tuple2<String, Double>>() {
@Override
public Tuple2<String, Double> map(Result result) throws Exception {
String name = result.name;
Double total = result.total;
return Tuple2.of(name, total);
}
}).print(); TableSink sink = new CsvTableSink("SQLText.txt", " | "); //设置字段名
String[] filedNames = {"name", "total"};
//设置字段类型
TypeInformation[] filedTypes = {Types.STRING(), Types.DOUBLE()}; tableEnv.registerTableSink("SQLTEXT", filedNames, filedTypes, sink); sqlQueryResult.insertInto("SQLTEXT"); env.execute(); } public static class Orders {
public Integer id;
public String name;
public String book;
public Double price; public Orders() {
super();
} public static Orders of(Integer id, String name, String book, Double price) {
Orders orders = new Orders();
orders.id = id;
orders.name = name;
orders.book = book;
orders.price = price;
return orders;
}
} public static class Result {
public String name;
public Double total; public Result() {
super();
} public static Result of(String name, Double total) {
Result result = new Result();
result.name = name;
result.total = total;
return result;
}
} }
想参考完整的代码,可以访问 https://github.com/stonehqs/flink-demo 。
有问题,欢迎拍砖。
Flink系统之Table API 和 SQL的更多相关文章
- Flink实战(六) - Table API & SQL编程
1 意义 1.1 分层的 APIs & 抽象层次 Flink提供三层API. 每个API在简洁性和表达性之间提供不同的权衡,并针对不同的用例. 而且Flink提供不同级别的抽象来开发流/批处理 ...
- [源码分析] 带你梳理 Flink SQL / Table API内部执行流程
[源码分析] 带你梳理 Flink SQL / Table API内部执行流程 目录 [源码分析] 带你梳理 Flink SQL / Table API内部执行流程 0x00 摘要 0x01 Apac ...
- 【翻译】Flink Table Api & SQL —— 连接到外部系统
本文翻译自官网:Connect to External Systems https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev ...
- Flink Table Api & SQL 翻译目录
Flink 官网 Table Api & SQL 相关文档的翻译终于完成,这里整理一个安装官网目录顺序一样的目录 [翻译]Flink Table Api & SQL —— Overv ...
- 【翻译】Flink Table Api & SQL —— Overview
本文翻译自官网:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/ Flink Table Api & ...
- 【翻译】Flink Table Api & SQL —— 概念与通用API
本文翻译自官网:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/common.html Flink Tabl ...
- 【翻译】Flink Table Api & SQL —Streaming 概念 ——动态表
本文翻译自官网:Flink Table Api & SQL 动态表 https://ci.apache.org/projects/flink/flink-docs-release-1.9/de ...
- 【翻译】Flink Table Api & SQL —Streaming 概念 ——时间属性
本文翻译自官网: Time Attributes https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/str ...
- 【翻译】Flink Table Api & SQL — 自定义 Source & Sink
本文翻译自官网: User-defined Sources & Sinks https://ci.apache.org/projects/flink/flink-docs-release-1 ...
随机推荐
- Go Web 编程之 程序结构
概述 一个典型的 Go Web 程序结构如下,摘自<Go Web 编程>: 客户端发送请求: 服务器中的多路复用器收到请求: 多路复用器根据请求的 URL 找到注册的处理器,将请求交由处理 ...
- 【Java并发基础】并发编程领域的三个问题:分工、同步和互斥
前言 可以将Java并发编程抽象为三个核心问题:分工.同步和互斥. 这三个问题的产生源自对性能的需求.最初时,为提高计算机的效率,当IO在等待时不让CPU空闲,于是就出现了分时操作系统也就出现了并发. ...
- 原生javascript 基础动画原理
一.实现原理: 1.开定时器前先清除定时器 2.设置定时器 3.当前元素的位置 + 每一步的长度 4.当元素当前位置超过目标点时,把当前位置==目标点 5.设置元素位置,开始运动 6.判断当前位置如果 ...
- LGV - 求多条不相交路径的方案数
推荐博客 :https://blog.csdn.net/qq_25576697/article/details/81138213 链接:https://www.nowcoder.com/acm/con ...
- Xmind: ZEN快捷键
- Nginx作为web静态资源服务器——防盗链
基于http_refer防盗链配置模块 Syntax:valid_referers none | blocked | server_names | string ...; Default:—— C ...
- 去除Linux中的^M
(1)安装tofrodos sudo apt-get install tofrodos (2)做一些优化 ln -s /usr/bin/todos /usr/bin/unix2dos ln -s /u ...
- java异步调用方法
一.利用多线程 直接new线程 Thread t = new Thread(){ @Override public void run() { longTimeMethod(); } }; 使用线程池 ...
- 网络io模型总结
操作系统基本概念 首先来来说下操作系统,嗯,操作系统是计算机硬件的管理软件,是对计算机硬件的抽象,操作系统将应用程序分为用户态和内核态,例如驱动程序就位于内核态,而我们写的一般程序都是用户态,包括we ...
- laravel脚手架搭建项目问题之生产环境element-ui组件字体图标显示错误问题
问题描述: 1.element-ui组件使用的是npm安装 2.npm scripe模式开发 3.使用git命令行工具开发 3.开发环境下图标正常显示 4.生产环境下图标显示不正常 分析原因: 图标文 ...