1 前言

近日工作不是太忙,刚好有时间了解一些其他东西,本来打算今天上午去体检,但是看看天气还是明天再去吧,也有很大一个原因:就是周六没有预约上!闲话少说,这里简单对锁来个简单介绍分享。

2 目录
  • 第一部分:什么是锁
  • 第二部分:锁的分类
  • 第三部分:锁的作用
  • 第四部分:iOS中锁的实现
第一部分:什么是锁

从小就知道锁,就是家里门上的那个锁,用来防止盗窃的锁。它还有钥匙,用于开锁。不过这里的锁,并不是小时候认知的锁,而是站在程序员的角度的锁。这里我就按照我的理解来介绍一下锁。

在计算机科学中,锁是一种同步机制,用于在存在多线程的环境中实施对资源的访问限制。你可以理解成它用于排除并发的一种策略。看例子

if (lock == 0) {
lock = myPID;
}

上面这段代码并不能保证这个任务有个锁,因此它可以在同一时间被多个任务执行。这个时候就有可能多个任务都检测到lock是空闲的,因此两个或者多个任务都将尝试设置lock,而不知道其他的任务也在尝试设置lock。这个时候就会出问题了。

再看看这段代码:

class Acccount {
long val = 0; //这里不可在其他方法修改,只能通过add/minus修改
object thisLock = new object();
public void add(const long x) {
lock(thisLock) {
val +=x;
}
}
public void minus(const long x) {
lock(thisLock) {
val -=x;
}
}
}

这样就能防止多个任务去修改val了,(这里注意,如果val是public的,那个也会导致一些问题)。

第二部分:锁的分类

锁根据不同的性质可以分成不同的类。

在WiKiPedia介绍中,一般的锁都是建议锁,也就四每个任务去访问公共资源的时候,都需要取得锁的资讯,再根据锁资讯来确定是否可以存取。若存取对应资讯,锁的状态会改变为锁定,因此其他线程不会访问该资源,当结束访问时,锁会释放,允许其他任务访问。有些系统有强制锁,若未经授权的锁访问锁定的资料,在访问时就会产生异常。

在iOS中,锁分为递归锁、条件锁、分布式锁、一般锁(这里是看着NSLock类里面的分类划分的)。

对于数据库的锁分类:

分类方式 分类
按锁的粒度划分 表级锁、行级锁、页级锁
按锁的级别划分 共享锁、排他锁
按加锁方式划分 自动锁、显示锁
按锁的使用方式划分 乐观锁、悲观锁
按操作划分 DML锁、DDL锁

这里就不在详细介绍了,感兴趣的大家可以自己查阅相关资料。

第三部分:锁的作用

这个比较通俗来讲:就是为了防止在多线程(多任务)的情况下对共享资源(临界资源)的脏读或者脏写。也可以理解为:执行多线程时用于强行限制资源访问的同步机制,即并发控制中保证互斥的要求。

第四部分:iOS中锁的实现

先看看iOS中NSLock类的.h文件。这里就不在写上来了。从代码中可以看出,该类分成了几个子类:NSLock、NSConditionLock、NSRecursiveLock以及NSCondition。然后有一个NSLocking的协议:

@protocol NSLocking
- (void)lock;
- (void)unlock;
@end

这几个子类都遵循了NSLock的协议,这里简单介绍一下其中的几个方法:

对于tryLock方法,尝试获取一个锁,并且立刻返回Bool值,YES表示获取了锁,NO表示没有获取锁失败。 lockBeforeDate:方法,在某个时刻之前获取锁,如果获取成功,则返回YES,NO表示获取锁失败。接下来就让我们看一下iOS中实现锁的方式:

方式1 使用NSLock类
- (void)nslockDemo {
NSLock *myLock = [[NSLock alloc] init];
_testLock = [[TestLock alloc] init];
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
[myLock lock];
[_testLock method1];
sleep(5);
[myLock unlock];
if ([myLock tryLock]) {
NSLog(@"可以获得锁");
}else {
NSLog(@"不可以获得所");
}
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
sleep(1);
if ([myLock tryLock]) {
NSLog(@"---可以获得锁");
}else {
NSLog(@"----不可以获得所");
}
[myLock lock];
[_testLock method2];
[myLock unlock];
});
}
方式2 使用@synchorize
- (void)synchronizeDemo {
_testLock = [[TestLock alloc] init];
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
@synchronized (_testLock) {
[_testLock method1];
sleep(5);
}
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
sleep(1);
@synchronized (_testLock) { [_testLock method2];
}
});
}

对于synchorize指令中使用的testLock为该锁标示,只有标示相同的时候才满足锁的效果。它的优点是不用显式地创建锁,便可以实现锁的机制。但是它会隐式地添加异常处理程序来保护代码,该程序在抛出异常的时候自动释放锁。

方式3 使用gcd
- (void)gcdDemo {
_testLock = [[TestLock alloc] init];
dispatch_semaphore_t semaphore = dispatch_semaphore_create(1);
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
[_testLock method1];
sleep(5);
dispatch_semaphore_signal(semaphore);
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
sleep(1);
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
[_testLock method2];
dispatch_semaphore_signal(semaphore);
}); }
方式4 使用phtread
- (void)pthreadDemo {
_testLock = [[TestLock alloc] init]; __block pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL); //线程1
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
pthread_mutex_lock(&mutex);
[_testLock method1];
sleep(5);
pthread_mutex_unlock(&mutex);
}); //线程2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
sleep(1);
pthread_mutex_lock(&mutex);
[_testLock method2];
pthread_mutex_unlock(&mutex);
});
}

pthread_mutex_t定义在pthread.h,所以记得#include。

3 性能对比

这里简单写一个小程序来进行四种方式的性能对比,这里再固定次数内进行了加锁解锁,然后输出用时,结果如下(测试1、2执行次数不一样:测试1 < 测试2):

测试1
2016-11-05 15:27:52.595 LockDemo[4394:202297] NSLock times:0.871843
2016-11-05 15:27:56.335 LockDemo[4394:202297] synthorize times:3.738939
2016-11-05 15:27:56.691 LockDemo[4394:202297] gcd times:0.355344
2016-11-05 15:27:57.328 LockDemo[4394:202297] pthread times:0.636815
2016-11-05 15:27:57.559 LockDemo[4394:202297] OSSPinLock times:0.231013
2016-11-05 15:27:57.910 LockDemo[4394:202297] os_unfair_lock times:0.350615
测试2
2016-11-05 15:30:54.123 LockDemo[4454:205180] NSLock times:1.908103
2016-11-05 15:31:02.112 LockDemo[4454:205180] synthorize times:7.988547
2016-11-05 15:31:02.905 LockDemo[4454:205180] gcd times:0.792113
2016-11-05 15:31:04.372 LockDemo[4454:205180] pthread times:1.466987
2016-11-05 15:31:04.870 LockDemo[4454:205180] OSSPinLock times:0.497487
2016-11-05 15:31:05.637 LockDemo[4454:205180] os_unfair_lock times:0.767569

这里还测试了OSSPinLock(此类已经被os_unfair_lock所替代)。结果如下:

synthorize > NSLock > pthread > gcd > os_unfair_lock >OSSPinLock

这里:

synthorize内部会添加异常处理,所以耗时。

pthread_mutex底层API,处理能力不错。

gcd系统封装的C代码效果比pthread好。

4 总结

简单就介绍这么多。

5 参考文档:

谈谈iOS中的锁的更多相关文章

  1. 谈谈MySQL中的锁

    谈谈MySQL中的锁 锁的定义 ​ 在生活中锁的例子就非常多了,所以应该很容易理解锁的含义.在计算机领域,可以这样来概述,锁是计算机协调多个进行进程并发访问某一资源的机制. ​ 在数据库中,锁也是一个 ...

  2. 谈谈iOS中的屏幕方向

    众所周知,iOS中提供了[UIDevice currentDevice].orientation与[UIApplication sharedApplication].statusBarOrientat ...

  3. 谈谈 iOS 中图片的解压缩

    原文 对于大多数 iOS 应用来说,图片往往是最占用手机内存的资源之一,同时也是不可或缺的组成部分.将一张图片从磁盘中加载出来,并最终显示到屏幕上,中间其实经过了一系列复杂的处理过程,其中就包括了对图 ...

  4. 【转】谈谈 iOS 中图片的解压缩

    转自:http://blog.leichunfeng.com/blog/2017/02/20/talking-about-the-decompression-of-the-image-in-ios/ ...

  5. 多线程 (三)iOS中的锁

    锁的类别:互斥锁,递归锁,条件锁,自旋锁等 锁的实现方式:NSLock,NSRecursiveLock, NSConditionLock,@synchronized,GCD的信号量等 下面说一下常用的 ...

  6. Python并发编程之谈谈线程中的“锁机制”(三)

    大家好,并发编程 进入第三篇. 今天我们来讲讲,线程里的锁机制. 本文目录 何为Lock( 锁 )?如何使用Lock( 锁 )?为何要使用锁?可重入锁(RLock)防止死锁的加锁机制饱受争议的GIL( ...

  7. 多线程(三) iOS中的锁

    锁的类别:互斥锁,递归锁,条件锁,自旋锁等 锁的实现方式:NSLock,NSRecursiveLock, NSConditionLock,@synchronized,GCD的信号量等 下面说一下常用的 ...

  8. 谈谈iOS中粘性动画以及果冻效果的实现

    在最近做个一个自定义PageControl——KYAnimatedPageControl中,我实现了CALayer的形变动画以及CALayer的弹性动画,效果先过目: https://github.c ...

  9. 转:谈谈iOS中粘性动画以及果冻效果的实现

    在最近做个一个自定义PageControl——KYAnimatedPageControl中,我实现了CALayer的形变动画以及CALayer的弹性动画,效果先过目: 先做个提纲: 第一个分享的主题是 ...

随机推荐

  1. Android中Path类的lineTo方法和quadTo方法画线的区别

    转载:http://blog.csdn.net/stevenhu_223/article/details/9229337 当我们需要在屏幕上形成画线时,Path类的应用是必不可少的,而Path类的li ...

  2. ASP.NET Core的配置(3): 将配置绑定为对象[上篇]

    出于编程上的便利,我们通常不会直接利用ConfigurationBuilder创建的Configuration对象读取某个单一配置项的值,而是倾向于将一组相关的配置绑定为一个对象,我们将后者称为Opt ...

  3. Mac下有道笔记本问题反馈

    1).Mac笔记上的编辑状态框非常的小.操作起来不是非常的方便.可以把显示稍微放大一些. 2). 新建笔记本的时候,这里用户可能没有注意到这里可以输入,此时这里的高亮的颜色可以适当的修改成别的颜色. ...

  4. 最详细的网站改版SEO优化指南:如何让排名不降反升

    我知道,网站改版很是让人头疼.首先,这个过程需要很长时间还有大量工作要做,并且通常结果不会如你的预期.其次,改版确实有破坏之前为 SEO 所做努力的风险. 但不要因为通常网站改版带来排名下降就认为这是 ...

  5. 2015-10-22 前思后想,决定重构表结构,免得这个APP死在数据表设计上

    新的设计稿出来了,如下,原来旧的是第二张       -------  原来的评论级数只有2级,现在是不限,2级的意思是,用户评论该帖是一级,用户的评论能被人评论,这是第2级,评论评论的评论不能够再被 ...

  6. java 线程池ThreadPoolExecutor 如何与 AsyncTask() 组合使用。

    转载请声明出处谢谢!http://www.cnblogs.com/linguanh/ 这里主要使用Executors中的4种静态创建线程池实例方法中的 newFixedThreadPool()来举例讲 ...

  7. H5基于iScroll实现下拉刷新,上拉加载更多

    前言 前一段有个手机端的项目需要用到下拉刷新和上拉加载更多的效果,脑海里第一反映就是微博那种效果,刚开始的理解有些偏差,以为下拉也是追加数据,上拉也是追加数据,后请教同事后发现其实下拉只是刷新最新数据 ...

  8. AppCan学习笔记----Request和登录功能简单实现

    appcan.ajax(options) 实现appcan中网络数据的上传和获取 发起一个ajax请求,并获取相应的内容 常用参数 options.type: 请求的类型,包括GET.POST等 op ...

  9. 记录visual Studio使用过程中的两个问题

    Visual Studio是Windows平台下进行项目管理和开发的终极利器.除了微软自家的技术外,新版的VS不但支持Javascript, Python的开发调试,甚至还支持了Android, iO ...

  10. LINQ之延迟加载及其原理

    这是LINQ(集成化查询)的继续及补充,在前面我已经介绍过,在LINQ中,一个重要的特性就是延迟加载,是指查询操作并不是在查询运算符定义的时候执行,而是在真正使用集合中的数据时才执行(如:在遍历集合时 ...