[NLP]Transformer-XL论文解读
关于Transformer的具体内容,可以访问:https://www.cnblogs.com/mj-selina/p/12369797.html
简介
Transformer是Google Brain2017年提出的一种模型,它的编码能力超越了RNN,但是对于长距离依赖的建模能力依然不足。为解决长距离依赖问题,Google Brain提出了Transformer-XL模型(XL是extra long的意思),不仅能够获取长距离依赖,而且解决了文本碎片化的问题。Transformer-XL是基于vanilla Transformer进行创新的,它不仅能比vanilla Transformer处理4.5倍长的长距离依赖关系,而且在评估期间要比vanilla Transformers快1800倍。
注1:文本碎片化是vanilla Transformer中会遇到的问题,因为vanilla Transformer只能处理固定长度的序列,如果序列过长,会将其切割成两个或者多个序列,如果序列之间存在语义关系,而vanilla Transformer在编码的时候会丢失这种语义关系(在编码时,序列与序列之间不产生信息交换),产生文本碎片化问题。
Vanilla Transformer
VanillaTransformer输入固定长度的序列,如果输入序列比规定的长度长,则会将输入序列不考虑语义的切割成多个segment,如下图(a)所示。这种不考虑语义的切割方法,会导致文本碎片化问题,每个segment只能获取到自己的语义信息,而丢失之前segment的语义信息。
而在评估时,vanilla模型只会考虑同样长度的segment,一般它会取最后一个位置的隐向量作为输出。如下图(b)所示,在预测输出时,模型每次会向右移动一步,并根据新的segment片段预测此刻的单词。这种使用当前序列重新预测的方法,会导致计算量大增,预测速度较慢,且不能利用更早的信息。

Transformer-XL
1、片段级递归机制(segment-level recurrence mechanism):在Transformer中引入了循环机制,在训练当前segment的时候,会保存并使用上一个segment每一层的输出向量。这样就可以利用之前segment的信息,提高Transformer长期依赖的能力,在训练时前一个segment的输出只参与前向计算,而不参与反向传播。

如上图所示,可以看出,在训练当前segment时,Transformer-XL会利用前一个segment的信息(图中绿色线段)。如果GPU内存允许,可以使用前多个segment的信息。
循环机制的另一个优点是测试速度快,它每次可以前进一个segment的距离,而不是像vanilla一样,一次只能前进一个表征。
2、相对位置编码(Relative Positional Encodings):Transformer中使用一个序列的绝对位置计算positional encoding,再与单词的encoding相加即可。但是Transformer-XL中,将序列分成多个segment,每个segment都会存在相同位置的Embedding,positional encoding的位置信息就失去了意义。因此Transformer-XL提出了相对位置编码,在计算当前位置隐向量的时候,考虑其互相依赖的token的位置关系。具体做法是,在计算attention score的时候,只考虑query向量与key向量的相对位置关系,并将这种相对位置关系加入到每一层Transformer的attention的计算中,具体的计算法师如下:
(1)内容权重:没有添加原始位置编码的原始分数
(2)相对于当前内容的位置偏差:指从前一个seglment的第一个位置(假设index为0)到当前segment的当前word的位置(假设index为k),则位置偏差为k-t,并对位置偏差使用正弦函数进行位置向量计算
(3)可学习的全局内容偏差:该模型添加了一个可学习的向量,用于调整其他表征内容(Kj)的重要性
(4)可学习的全局偏差:另一个可学习向量,仅根据表征之间的距离调整重要性(例如,最后一个词可能比前一个segment中的词更重要)
关于相对位置的具体计算方法,可以看[4]
参考资料:
[1] https://zhuanlan.zhihu.com/p/70745925
[2] https://www.infoq.cn/article/wt-KaTfcsAv9E7exzIkF
[3] https://zhuanlan.zhihu.com/p/84159401
[4] http://www.linzehui.me/2019/05/07/%E4%BB%A3%E7%A0%81%E7%9B%B8%E5%85%B3/%E5%85%B3%E4%BA%8Etransformer-xl%E4%B8%ADrel-shift%E5%AE%9E%E7%8E%B0%E7%9A%84%E8%A7%A3%E8%AF%BB/
[NLP]Transformer-XL论文解读的更多相关文章
- NLP论文解读:无需模板且高效的语言微调模型(上)
原创作者 | 苏菲 论文题目: Prompt-free and Efficient Language Model Fine-Tuning 论文作者: Rabeeh Karimi Mahabadi 论文 ...
- [论文解读] 阿里DIEN整体代码结构
[论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 ...
- 注意力论文解读(1) | Non-local Neural Network | CVPR2018 | 已复现
文章转自微信公众号:[机器学习炼丹术] 参考目录: 目录 0 概述 1 主要内容 1.1 Non local的优势 1.2 pytorch复现 1.3 代码解读 1.4 论文解读 2 总结 论文名称: ...
- 论文解读丨表格识别模型TableMaster
摘要:在此解决方案中把表格识别分成了四个部分:表格结构序列识别.文字检测.文字识别.单元格和文字框对齐.其中表格结构序列识别用到的模型是基于Master修改的,文字检测模型用到的是PSENet,文字识 ...
- 人工智能论文解读精选 | PRGC:一种新的联合关系抽取模型
NLP论文解读 原创•作者 | 小欣 论文标题:PRGC: Potential Relation and Global Correspondence Based Joint Relational ...
- itemKNN发展史----推荐系统的三篇重要的论文解读
itemKNN发展史----推荐系统的三篇重要的论文解读 本文用到的符号标识 1.Item-based CF 基本过程: 计算相似度矩阵 Cosine相似度 皮尔逊相似系数 参数聚合进行推荐 根据用户 ...
- CVPR2019 | Mask Scoring R-CNN 论文解读
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
- Gaussian field consensus论文解读及MATLAB实现
Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction ...
- zz扔掉anchor!真正的CenterNet——Objects as Points论文解读
首发于深度学习那些事 已关注写文章 扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 关注他 JustDoIT 等 ...
随机推荐
- npm常用模块之mkdirp使用
更多npm常用模块使用请访问:npm常用模块汇总 mkdirp这是一款在node.js中像mkdir -p一样递归创建目录及其子目录. 更多使用文档请点击访问mkdirp工具官网. 安装 一键安装不多 ...
- Java集合之Collections 剖析
Collections工具类位于 java.util 包下,是一个比较常用的工具类,关于这个工具类,主要介绍其在使用过程中遇到的大坑!!! [事故现场] 在实际项目开发过程中,在前人代码的基础上,对于 ...
- 【H5适配 笔记1】rem适配
设备像素比(dpr)= 物理像素(手机渲染像素.分辨率)/设备独立像素(手机所显示元素的大小) 视口(viewport) 布局视口(获取浏览器布局视口高度,包括内边距,但不包括垂直滚动条.边框和外边距 ...
- UML 工具 Dia
linux下一款不错的流程图工具:dia. dia是一款非常优秀的制图工具,可以用于绘制 类图,流程图等等 安装此工具: 1.打开终端(快捷键:ctrl+alt+t). 2.输入命令:$sudo ap ...
- String类型的日期怎么转化为Date类型
在一个SQL中,如果同时使用rownum和order by,会有一个先后顺序的问题. 比如select id1,id2 from t_tablename where rownum<3 order ...
- react-React深入-一等公民-props-onChange
title: '[react]深入 - 一等公民 props & onChange' date: 2017-08-23 10:05:07 tags: react reactjs props o ...
- CentOS 安装后的常用配置
镜像配置 CentOS系统的镜像配置文件路径在 /etc/yum.repos.d/CentOS-Base.repo, 将镜像内容copy到 CentOS-Base.repo中 然后运行 yum mak ...
- 19新生赛 谁更nb
题目描述: 有一堆石子共有N个.syx xxh两个人轮流拿,syx先拿.每次最少拿1颗,最多拿K颗,拿到最后1颗石子的人获 胜.syx xxh都非常聪明,拿石子的过程中不会出现失误.给出N和K,问最后 ...
- The file is absent or does not have execute permission This file is needed to run this program
tomcat下载后发现startup.sh文件启动不了 原因: 没有权限 解决方案:chmod 777 *.sh
- linux执行计划任务at命令
https://www.jianshu.com/p/17f5aa01853f 在linux计划任务中, cron 是周期性运行某任务,假如我只想在未来的某时间点只是要求任务运行一次,这就用到at命令了 ...