大家还好吗?
背景就不用多说了吧?本来我是初四上班的,现在延长到2月10日了。这是我工作以来时间最长的一个假期了。可惜哪也去不了。待在家里,没啥事,就用python模拟预测一下新冠病毒肺炎的数据吧。要声明的是本文纯属个人自娱自乐,不代表真实情况。
采用SIR模型,S代表易感者,I表示感染者,R表示恢复者。染病人群为传染源,通过一定几率把传染病传给易感人群,ta自己也有一定的几率被治愈并免疫,或死亡。易感人群一旦感染即成为新的传染源。
模型假设:
①不考虑人口出生、死亡、流动等情况,即人口数量保持常数。
②一个病人一旦与易感者接触就必然具有一定的传染力。假设 t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数s(t)成正比,比例系数为β,从而在t时刻单位时间内被所有病人传染的人数为βs(t)i(t)。
③ t 时刻,单位时间内从染病者中移出的人数与病人数量成正比,比例系数为γ,单位时间内移出者的数量为γi(t)。
模型为

其中,β为感染系数,代表易感人群与传染源接触被感染的概率。γ为隔离(恢复)系数,我们对其倒数1/γ更感兴趣,代表了平均感染时间(average infectious period)。S(0)为初始易感人数,I(0)为初始感染人数。
按照[1]里面的代码模型的感染人数是这样的

现在的问题就是利用现有的数据找到新冠肺炎的β值,γ值等数据了。先把数据拔下来吧。从[3]上扒数据,由于数据不多,就手工完成吧。保存到csv文件里。
然后把数据作图

还有一个指标是再生数R0=β/γ,大于1时人群中大部分才被感染[4]。世卫组织1月23日的估计是R0在1.4到2.5之间[5],最新的根据前425例发病数据的估计值为2.2[6]。
文章[7]中的按一般病毒性肺炎恢复期25天计算得到的γ值为0.04。
关于β值和初始易感人群,[7]的作者采用的方法是先估计一个区间,然后用最小二乘法找到最佳参数,β≈3.57*10^-5。S[0]的范围为5000-30000人。[7]文章里有matlab代码,我用python改写一下,由于对最小二乘法法的实现比较陌生,尝试了半天,最后我决定用最笨的办法——穷举法。就是用两个嵌套循环将范围内所有β值和S0值都试一遍,计算每次尝试结果与实际数据之间差值的平方和,平方和最小的一组β值和S0值用来做预测。代码如下:

γ值设定为0.04,即一般病程25天

用最小二乘法估计β值和初始易感人数

gamma = 0.04
S0 = [i for i in range(20000, 40000, 1000)]
beta = [f for f in np.arange(1e-7, 1e-4, 1e-7)]
# 定义偏差函数
def error(res):
    err = (data["感染者"] - res)**2
    errsum = sum(err)
    return errsum

# 穷举法,找出与实际数据差的平方和最小的S0和beta值
minSum = 1e10
minS0 = 0.0
minBeta = 0.0
bestRes = None

for S in S0:
    for b in beta:
        # 模型的差分方程
        def diff_eqs_2(INP, t):
            Y = np.zeros((3))
            V = INP
            Y[0] = -b * V[0] * V[1]
            Y[1] = b * V[0] * V[1] - gamma * V[1]
            Y[2] = gamma * V[1]
            return Y

        # 数值解模型方程
        INPUT = [S, I0, 0.0]
        RES = spi.odeint(diff_eqs_2, INPUT, t_range)
        errsum = error(RES[:21, 1])
        if errsum < minSum:
            minSum = errsum
            minS0 = S
            minBeta = b
            bestRes = RES
            print("S0=%d beta=%f minErr=%f" % (S, b, errsum))
print("S0 = %d β = %f" % (minS0, minBeta))

结果 S0 = 39000, β = 8e-6
上述程序耗时较长,只在探索时执行,完了就注释掉,用最优参数进行预测。

预测最大感染人数:23769 时间是在1月10日的33天后,也就是2月12日。
本文代码:https://github.com/zwdnet/2019-nCov-SIRmodel

再次声明:本文只是我个人在家无聊的游戏作品,不是正儿八经的预测。我也不是流行病学专业人士。祝疫情早日结束!武汉加油!中国加油!

参考文献:
[1]SIR模型实现, https://blog.csdn.net/huozi07/article/details/50450433
[2]百度百科SIR模型词条, https://baike.baidu.com/item/SIR%E6%A8%A1%E5%9E%8B
[3]疫情通报.http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
[4]计算流行病学. https://www.csdn.net/article/1970-01-01/2816565
[5]关于新型冠状病毒(2019-nCoV)疫情的《国际卫 生条例(2005)》突发事件委员会会议的声明. https://www.who.int/zh/news-room/detail/23-01-2020-statement-on-the-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
[6]Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. https://www.nejm.org/doi/full/10.1056/NEJMoa2001316?query=featured_home
[7]基于SIR模型对新型冠状病毒疫情趋势的简单分析.https://zhuanlan.zhihu.com/p/104379096

我发文章的四个地方,欢迎大家在朋友圈等地方分享,欢迎点“在看”。
我的个人博客地址:https://zwdnet.github.io
我的知乎文章地址: https://www.zhihu.com/people/zhao-you-min/posts
我的博客园博客地址: https://www.cnblogs.com/zwdnet/
我的微信个人订阅号:赵瑜敏的口腔医学学习园地

SIR模型预测新冠病毒肺炎发病数据的更多相关文章

  1. MIT黑科技:通过手机记录的咳嗽数据检测是否感染新冠病毒

    这次的新冠状病毒虽然没有2002年的SARS破坏力那么强悍,但其可怕之处是长时间的无症状潜伏,使得被感染者在不知情的情况下,将病毒散播出去.如果没有强有力的防疫手段,病毒的传播几乎难以控制.而防止病毒 ...

  2. Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...

  3. 参加Folding@Home(FAH)项目,为战胜新冠肺炎贡献出自己的一份力量

    鉴于新冠病毒(COVID-19)在全球范围内的大规模传播,PCMR和NVIDIA呼吁全球PC用户加入Folding@home项目贡献自己闲置的GPU计算力,协助抗击新冠状病毒疫情. 目前全球有超过40 ...

  4. 探索新冠肺炎(COVID-19)对全球航班的影响

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ 随着今天从欧洲到美国的旅行限制生效,以及为了减缓新冠病毒的传播更 ...

  5. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  6. 面试刷题26:新冠攻击人类?什么攻击java平台?

    可恶的新冠病毒攻击人类,搞得IT就业形势相当不好?好在有钟南山院士带领我们提前开展好了防护工作! java作为基础平台安装在各种移动设备,PC,小型机,分布式服务器集群,各种不同的操作系统上.所以,对 ...

  7. Python小白的数学建模课-B4. 新冠疫情 SIR模型

    Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...

  8. LabVIEW+OpenVINO在CPU上部署新冠肺炎检测模型实战

    前言 之前博客:[YOLOv5]LabVIEW+OpenVINO让你的YOLOv5在CPU上飞起来给大家介绍了在LabVIEW上使用openvino加速推理,在CPU上也能感受丝滑的实时物体识别.那我 ...

  9. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

随机推荐

  1. <Catalan>杨辉三角实现卡特兰数计算方法

    h(n)=C(2n,n)-C(2n,n-1) #include<cstdio> #define siz 20 using namespace std; int n; ][siz]; int ...

  2. C# 实现多线程

    1.System.Threading命名空间 System.Threading命名空间提供了使得可以多线程编程的类和接口   其中 (1)Thread类构成了C#多线程编程的支柱,他用于创建并控制线程 ...

  3. jquery file upload + asp.net 异步多文件上传

    百度了很久,国内一直 找不到 使用jquery file upload 插件 +asp.net 的相关代码 一开始使用 jquery uploadify ,一款基于 flash的插件,但是不支持 Sa ...

  4. C++模板特化与偏特化

    C++模板 说到C++模板特化与偏特化,就不得不简要的先说说C++中的模板.我们都知道,强类型的程序设计迫使我们为逻辑结构相同而具体数据类型不同的对象编写模式一致的代码,而无法抽取其中的共性,这样显然 ...

  5. Jmeter线程组使用详解,持续加压线程组详解

    以下罗列的是Jmeter 所有线程组的详解,包括官方自带的线程组,和官方插件的线程组.官方线程组安装,详见之前的文章:https://www.cnblogs.com/beimingyouyuqingc ...

  6. Apache Derby-01介绍DERBY

    1.DERBY是什么: Apache Derby 是IBM于2004年贡献给Apache软件基金会的数据库,于2005年正式成为开源项目,Derby作为一个基于JAVA的关系型数据库框架,他拥有许多便 ...

  7. ELK学习实验002:Elasticsearch介绍及单机安装

    一 简介 ElasticSearch是一个基于Luncene的搜索服务器.它提供了一个分布式多用户能力全文搜索引擎,基于RESTful web接口,ElsticSearch使用Java开发的,并作为A ...

  8. libcurl库的简单使用

    #include <stdio.h> #include <tchar.h> #include <windows.h> #include <process.h& ...

  9. Synchronized解析——如果你愿意一层一层剥开我的心

    前言 synchronized,是解决并发情况下数据同步访问问题的一把利刃.那么synchronized的底层原理是什么呢?下面我们来一层一层剥开它的心,就像剥洋葱一样,看个究竟. Synchroni ...

  10. 聊聊Python中的描述符

    描述符是实现描述符协议方法的Python对象,当将其作为其他对象的属性进行访问时,该描述符使您能够创建具有特殊行为的对象. 通常,描述符是具有“绑定行为”的对象属性,其属性访问已被描述符协议中的方法所 ...