显然做个前缀和之后变成询问区间内两个数异或最大值。

  一种暴力做法是建好可持久化trie后直接枚举其中一个数查询,复杂度O(nmlogv)。

  观察到数据范围很微妙。考虑瞎分块。

  设f[i][j]为第i个块中的数和第j个数的异或最大值。显然建一棵可持久化trie就可以以O(n√nlogv)的复杂度搞出来。

  有了这个后考虑怎么查询。对于完整的块内的数,给f再搞一个st表就可以了。而其他部分暴力枚举每个数,在可持久化trie上查询即可。

  常数巨大。块大小改成√nlogn后在darkbzoj上差10ms就T了,bzoj上自然过不了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 12010
#define BLOCK 120
#define u(x,p) x>>p&1^1
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],f[BLOCK][N][],root[N],L[BLOCK],R[BLOCK],pos[N],lg2[N],cnt=,lastans,block;
struct data{int ch[],s;
}tree[N<<];
void ins(int &k,int x,int p)
{
tree[++cnt]=tree[k];k=cnt;tree[k].s++;
if (p<) return;
ins(tree[k].ch[x>>p&],x,p-);
}
int query(int l,int r,int x,int p)
{
if (p<) return ;
if (tree[tree[r].ch[u(x,p)]].s>tree[tree[l].ch[u(x,p)]].s)
return query(tree[l].ch[u(x,p)],tree[r].ch[u(x,p)],x,p-)+(<<p);
else query(tree[l].ch[x>>p&],tree[r].ch[x>>p&],x,p-);
}
void build()
{
for (int i=;i<=n;i++)
{
root[i]=root[i-];
ins(root[i],a[i],);
}
}
int query(int i,int x,int y)
{
return max(f[i][x][lg2[y-x+]],f[i][y-(<<lg2[y-x+])+][lg2[y-x+]]);
}
void divide()
{
lg2[]=;
for (int i=;i<=n;i++)
{
lg2[i]=lg2[i-];
if ((<<lg2[i])<=i) lg2[i]++;
}
block=sqrt(n*lg2[n]);block=min(max(block,),n);
for (int i=;i<=n/block;i++) L[i]=(i-)*block+,R[i]=i*block;
if (n%block) L[n/block+]=(n/block)*block+,R[n/block+]=n,block=n/block+;
else block=n/block;
for (int i=;i<=block;i++)
for (int j=L[i];j<=R[i];j++)
pos[j]=i;
for (int i=;i<=n;i++)
for (int j=;j<=block;j++)
f[j][i][]=query(root[L[j]-],root[R[j]],a[i],);
for (int i=;i<=block;i++)
for (int j=;j<;j++)
for (int k=;k<=n;k++)
f[i][k][j]=max(f[i][k][j-],f[i][min(n,k+(<<j-))][j-]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2741.in","r",stdin);
freopen("bzoj2741.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read()+,m=read();
for (int i=;i<=n;i++) a[i]=a[i-]^read();
build();
divide();
for (int i=;i<=m;i++)
{
int x=((unsigned int)read()+lastans)%(n-)+,y=((unsigned int)read()+lastans)%(n-)+;
if (x>y) swap(x,y);y++;
lastans=;
for (int j=pos[x]+;j<pos[y];j++)
lastans=max(lastans,query(j,x,y));
if (pos[x]==pos[y])
{
for (int j=x;j<=y;j++)
lastans=max(lastans,query(root[x-],root[y],a[j],));
}
else
{
for (int j=x;j<L[pos[x]+];j++)
lastans=max(lastans,query(root[x-],root[y],a[j],));
for (int j=y;j>R[pos[y]-];j--)
lastans=max(lastans,query(root[x-],root[y],a[j],));
}
printf("%d\n",lastans);
}
return ;
}

BZOJ2741 FOTILE模拟赛L(分块+可持久化trie)的更多相关文章

  1. BZOJ.2741.[FOTILE模拟赛]L(分块 可持久化Trie)

    题目链接 首先记\(sum\)为前缀异或和,那么区间\(s[l,r]=sum[l-1]^{\wedge}sum[r]\).即一个区间异或和可以转为求两个数的异或和. 那么对\([l,r]\)的询问即求 ...

  2. BZOJ2741:[FOTILE模拟赛]L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

  3. 【BZOJ2741】【FOTILE模拟赛】L 分块+可持久化Trie树

    [BZOJ2741][FOTILE模拟赛]L Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max( ...

  4. 【bzoj2741】[FOTILE模拟赛] L

    Portal --> bzoj2741 Solution 突然沉迷分块不能自拔 考虑用分块+可持久化trie来解决这个问题 对于每一块的块头\(L\),预处理\([L,i]\)区间内的所有子区间 ...

  5. bzoj 2741 [FOTILE模拟赛] L

    Description 多个询问l,r,求所有子区间异或和中最大是多少 强制在线 Solution 分块+可持久化trie 1.对于每块的左端点L,预处理出L到任意一个i,[L,j] 间所有子区间异或 ...

  6. 【bzoj2741】[FOTILE模拟赛]L 可持久化Trie树+分块

    题目描述 FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor A ...

  7. 【BZOJ2741】【块状链表+可持久化trie】FOTILE模拟赛L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

  8. BZOJ 2741: 【FOTILE模拟赛】L [分块 可持久化Trie]

    题意: 区间内最大连续异或和 5点调试到现在....人生无望 但总算A掉了 一开始想错可持久化trie的作用了...可持久化trie可以求一个数与一个数集(区间中的一个数)的最大异或和 做法比较明显, ...

  9. BZOJ2741: 【FOTILE模拟赛】L

    2741: [FOTILE模拟赛]L Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1170  Solved: 303[Submit][Status] ...

随机推荐

  1. 我的$OI$

    我只是懒得写日记啦\(\color{pink}{qwq}\) //11月8日 啊--终于要\(NOIp\)了,为此期盼了好久.紧张了好久的我,不知道会迎来怎样的结果. 我只知道这段回忆是值得保留封存的 ...

  2. x window的奥秘

    阅读目录 了解自己机器上的 X Window 理解 display 和虚拟控制台 远程连接 X Server 理解 lightdm 和 X Window 桌面环境的启动过程 搞定 xauth X Se ...

  3. cleanCode[1]:有意义的命名

    为什么要有意义的命名: 我们都曾经说过有朝一日再回头清理那些糟糕的代码,然而最终总是弃之不顾.稍后等于永不,我们需要立即行动,写优雅的代码. 写代码的过程中,读占的比例很大,所以首先要让代码易读. 有 ...

  4. 【第六课】Nginx常用配置下详解

    目录 Nginx常用配置下详解 1.Nginx虚拟主机 2.部署wordpress开源博客 3.部署discuz开源论坛 4.域名重定向 5.Nginx用户认证 6.Nginx访问日志配置 7.Ngi ...

  5. SSIS 你真的了解事务吗?

    事务用于处理数据的一致性,事务的定义是,处于同一个事务中的操作是一个工作单元,要么全部执行成功,要么全部执行失败.把事务的概念应用到在实际的SSIS Package场景中,如何在Package中实现事 ...

  6. 《Effective Java》学习笔记 —— 通用程序设计

    本章主要讨论局部变量.控制结构.类库.反射.本地方法的用法及代码优化和命名惯例. 第45条 将局部变量的作用域最小化 * 在第一次使用的它的地方声明局部变量(就近原则). * 几乎每个局部变量的声明都 ...

  7. Asp.Net_优化

    ASP.NET: 一.返回多个数据集 检查你的访问数据库的代码,看是否存在着要返回多次的请求.每次往返降低了你的应用程序的每秒能够响应请求的次数.通过在单个数据库请求中返回多个结果集,可以减少与数据库 ...

  8. git 创建标签和删除标签

    创建标签 在Git中打标签非常简单,首先,切换到需要打标签的分支上: $ git branch * dev master $ git checkout master Switched to branc ...

  9. Github相册博客搭建

    前一段时间我看见一个问答,大概意思就是程序员都是怎么用自己的专业技能逗女朋友或表白的. 看了很多,有写定时关机脚本恶搞的,也有简单写个html展示的,其中最著名的就是几年前有个人写了个网页记录他们在一 ...

  10. unity ray和line射线检测

    RaycastHit 光线投射碰撞 Struct Structure used to get information back from a raycast. 用来获取从raycast函数中得到的信息 ...