问题描述

给定g个group,n个id,n<=g.我们将为每个group分配一个id(各个group的id不同)。但是每个group分配id需要付出不同的代价cost,需要求解最优的id分配方案,使得整体cost之和最小。

例子

例如以下4个group,三个id,value矩阵A

value id1 id2 id3
H1 4 3 0
H2 1 0 0
H3 2 0 2
H4 3 1 0

id_i分配给H_j的代价\(changing cost[i, j]=\sum(A[j,:])-A[j,i]\)。
例如,如果给H1指定id1,则value=4被保留,但是需要付出changing cost为3.

我们需要为H1-H4分别指定一个id1-id3,id4(新建的id),目标是是的总体的changing cost最小。
例子中最优的分配结果是:
H1 <- id2,
H2 <- New ID,
H3 <- id3,
H4 <- id1,
对应的changing cost=8 (4 + 1 + 2 + 1)。

Min-cost Max flow算法

Use min-cost max flow here
Connect source to all ids with capacity 1, connect each id to each h with capacity 1 and cost= -a[id[i], h[j]] (as you need to find maximums actually), and then connect all hs with sink with capacity 1.
After applying min-cost max flow, you will have flow in those (i, j) where you should assign i-th id to j-th h. New ids for other hs.

因为capacity=1,算法最终结果f[i,j]只可能取值0/1。所以,如果f[i,j]=1,则id_i被分配给h_j.


Here is a possible solution of the problem with some help of [min cost max flow algorithm:
http://web.mit.edu/~ecprice/acm/acm08/MinCostMaxFlow.java https://en.wikipedia.org/wiki/Minimum-cost_flow_problem.

The basic idea is to translate consumer id, group id to vertex of graph, translate our constrains to constrains of MinCostMaxFlow problem.

As for POC, I used the source code from website (web.mit.edu), did some change and checked in the algorithm to trunk.
I added unit test RuleBasedOptimizerTest.test6() to test the 66x 4 case, which runs successfully in milliseconds.
Also, test was done on the data which caused time out before, and this time it is fast.

Steps of the algorithm:

Create the flow network:

  1. Introduce a source vertex, a sink vertex;
  2. Each consumerid is a vertex, each groupid is a vertex;
  3. Connect source to each consumerId, each edge has capacity 1;
  4. Connect each consumerId to groupId, each edge has capacity 1;
  5. Connect each groupId to sink, each edge has capacity 1;
  6. The cost of a(u, v) is from the cost table, but we need to take -1 x frequency.

Calculate max flow of the network, and get the flow matrix.

  • If there is flow from cid_i to gid_k then we assign the cid_i to the gid_k;
  • If there is no flow to gid_k, then we assign a new id to gid_k.

Algorithm complex

is O(min(|V|^2 * totflow, |V|^3 * totcost)), where |V|=(#groupid + #consumerId + 2).

min cost max flow算法示例的更多相关文章

  1. LeetCode算法题-Min Cost Climbing Stairs(Java实现)

    这是悦乐书的第307次更新,第327篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第176题(顺位题号是746).在楼梯上,第i步有一些非负成本成本[i]分配(0索引). ...

  2. LeetCode 746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 11

    746. 使用最小花费爬楼梯 746. Min Cost Climbing Stairs 题目描述 数组的每个索引做为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i].(索引从 0 ...

  3. C#LeetCode刷题之#746-使用最小花费爬楼梯( Min Cost Climbing Stairs)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4016 访问. 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个 ...

  4. HackerRank "Training the army" - Max Flow

    First problem to learn Max Flow. Ford-Fulkerson is a group of algorithms - Dinic is one of it.It is ...

  5. [Swift]LeetCode746. 使用最小花费爬楼梯 | Min Cost Climbing Stairs

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  6. backpropagation算法示例

    backpropagation算法示例 下面举个例子,假设在某个mini-batch的有样本X和标签Y,其中\(X\in R^{m\times 2}, Y\in R^{m\times 1}\),现在有 ...

  7. BZOJ4390: [Usaco2015 dec]Max Flow

    BZOJ4390: [Usaco2015 dec]Max Flow Description Farmer John has installed a new system of N−1 pipes to ...

  8. Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs)

    Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost ...

  9. 详解 Flink DataStream中min(),minBy(),max(),max()之间的区别

    解释 官方文档中: The difference between min and minBy is that min returns the minimum value, whereas minBy ...

随机推荐

  1. 微信小程序获取当前位置

    详细参数说明请看小程序api文档:https://developers.weixin.qq.com/miniprogram/dev/api/wx.openLocation.html wx.getLoc ...

  2. Django框架之序列化和上传文件

     一.Django的序列化(对于ajax请求) Django中的序列化主要应用在将数据库中检索的数据返回给客户端用户,特别的Ajax请求一般返回的为Json格式. 1)django序列化的使用方法 . ...

  3. tms web core 与 kbmmw 第一次亲密接触

    最近,tms 经过1年多,集合了数十名高手大牛,开发出了一个跨时代的产品,就是tms web core. 具体的介绍详见官网,https://www.tmssoftware.com/site/tmsw ...

  4. 使用 kbmmw 的ORM开发纯REST数据库访问服务

    运行环境: WIN 10  X64 delphi 10.2.2 kbmmw 5.05.11 Firefox 58.0.2 今天使用最新的kbmmw 版本做一个基于ORM的纯数据库访问的REST 服务器 ...

  5. 2019.01.23 hdu1693 Eat the Trees(轮廓线dp)

    传送门 题意简述:给一个有障碍的网格图,问用若干个不相交的回路覆盖所有非障碍格子的方案数. 思路:轮廓线dpdpdp的模板题. 同样是讨论插头的情况,只不过没有前一道题复杂,不懂的看代码吧. 代码: ...

  6. 2018.11.24 spoj New Distinct Substrings(后缀数组)

    传送门 双倍经验(弱化版本) 考虑求出来heightheightheight数组之后用增量法. 也就是考虑每增加一个heightheightheight对答案产生的贡献. 算出来是∑∣S∣−heigh ...

  7. 2018.11.06 bzoj1912: [Apio2010]patrol 巡逻(树形dp)

    传送门 一道挺妙的题啊. 对于K==1K==1K==1的直接求树的直径. 对于K==2K==2K==2的先求一次直径,然后考虑到如果两条边加进去形成的两个环重叠就会有负的贡献. 因此把之前那条直径上的 ...

  8. 4. Father's Impact on a Child's Language Development 父亲对孩子语言发展的影响

    4. Father's Impact on a Child's Language Development 父亲对孩子语言发展的影响 (1)Im families with two working pa ...

  9. 使用bat批处理文件定时自动备份oracle数据库并上传ftp服务器

    一.使用bat批处理文件备份oracle(前提是配置好oracle数据库客户端) @echo off set databasename=orcl  //数据库名 set username=ninic ...

  10. mmm和mmma的区别

    m:编译整个安卓系统 makes from the top of the tree mm:编译当前目录下的模块,当前目录下需要有Android.mk这个makefile文件,否则就往上找最近的Andr ...