问题描述

给定g个group,n个id,n<=g.我们将为每个group分配一个id(各个group的id不同)。但是每个group分配id需要付出不同的代价cost,需要求解最优的id分配方案,使得整体cost之和最小。

例子

例如以下4个group,三个id,value矩阵A

value id1 id2 id3
H1 4 3 0
H2 1 0 0
H3 2 0 2
H4 3 1 0

id_i分配给H_j的代价\(changing cost[i, j]=\sum(A[j,:])-A[j,i]\)。
例如,如果给H1指定id1,则value=4被保留,但是需要付出changing cost为3.

我们需要为H1-H4分别指定一个id1-id3,id4(新建的id),目标是是的总体的changing cost最小。
例子中最优的分配结果是:
H1 <- id2,
H2 <- New ID,
H3 <- id3,
H4 <- id1,
对应的changing cost=8 (4 + 1 + 2 + 1)。

Min-cost Max flow算法

Use min-cost max flow here
Connect source to all ids with capacity 1, connect each id to each h with capacity 1 and cost= -a[id[i], h[j]] (as you need to find maximums actually), and then connect all hs with sink with capacity 1.
After applying min-cost max flow, you will have flow in those (i, j) where you should assign i-th id to j-th h. New ids for other hs.

因为capacity=1,算法最终结果f[i,j]只可能取值0/1。所以,如果f[i,j]=1,则id_i被分配给h_j.


Here is a possible solution of the problem with some help of [min cost max flow algorithm:
http://web.mit.edu/~ecprice/acm/acm08/MinCostMaxFlow.java https://en.wikipedia.org/wiki/Minimum-cost_flow_problem.

The basic idea is to translate consumer id, group id to vertex of graph, translate our constrains to constrains of MinCostMaxFlow problem.

As for POC, I used the source code from website (web.mit.edu), did some change and checked in the algorithm to trunk.
I added unit test RuleBasedOptimizerTest.test6() to test the 66x 4 case, which runs successfully in milliseconds.
Also, test was done on the data which caused time out before, and this time it is fast.

Steps of the algorithm:

Create the flow network:

  1. Introduce a source vertex, a sink vertex;
  2. Each consumerid is a vertex, each groupid is a vertex;
  3. Connect source to each consumerId, each edge has capacity 1;
  4. Connect each consumerId to groupId, each edge has capacity 1;
  5. Connect each groupId to sink, each edge has capacity 1;
  6. The cost of a(u, v) is from the cost table, but we need to take -1 x frequency.

Calculate max flow of the network, and get the flow matrix.

  • If there is flow from cid_i to gid_k then we assign the cid_i to the gid_k;
  • If there is no flow to gid_k, then we assign a new id to gid_k.

Algorithm complex

is O(min(|V|^2 * totflow, |V|^3 * totcost)), where |V|=(#groupid + #consumerId + 2).

min cost max flow算法示例的更多相关文章

  1. LeetCode算法题-Min Cost Climbing Stairs(Java实现)

    这是悦乐书的第307次更新,第327篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第176题(顺位题号是746).在楼梯上,第i步有一些非负成本成本[i]分配(0索引). ...

  2. LeetCode 746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 11

    746. 使用最小花费爬楼梯 746. Min Cost Climbing Stairs 题目描述 数组的每个索引做为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i].(索引从 0 ...

  3. C#LeetCode刷题之#746-使用最小花费爬楼梯( Min Cost Climbing Stairs)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4016 访问. 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个 ...

  4. HackerRank "Training the army" - Max Flow

    First problem to learn Max Flow. Ford-Fulkerson is a group of algorithms - Dinic is one of it.It is ...

  5. [Swift]LeetCode746. 使用最小花费爬楼梯 | Min Cost Climbing Stairs

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  6. backpropagation算法示例

    backpropagation算法示例 下面举个例子,假设在某个mini-batch的有样本X和标签Y,其中\(X\in R^{m\times 2}, Y\in R^{m\times 1}\),现在有 ...

  7. BZOJ4390: [Usaco2015 dec]Max Flow

    BZOJ4390: [Usaco2015 dec]Max Flow Description Farmer John has installed a new system of N−1 pipes to ...

  8. Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs)

    Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost ...

  9. 详解 Flink DataStream中min(),minBy(),max(),max()之间的区别

    解释 官方文档中: The difference between min and minBy is that min returns the minimum value, whereas minBy ...

随机推荐

  1. for 循环分解

    for (expression1; expression2; expression3) { statement; } statement称为循环体 expression1为初始化部分,只在循环开始前执 ...

  2. Java Swing 中使用 EventQueue

    public static void main(String[] args) { EventQueue.invokeLater(new Runnable() { public void run() { ...

  3. SPring中quartz的配置(可以用实现邮件定时发送,任务定时执行,网站定时更新等)

    http://www.cnblogs.com/kay/archive/2007/11/02/947372.html 邮件或任务多次发送或执行的问题: 1.<property name=" ...

  4. String... to 可变参数的使用

    public class testMail { public static void fun(int... x) { for(int i = 0;i < x.length;i++) { Syst ...

  5. 数据库MySQL 之 索引原理与慢查询优化

    数据库MySQL 之 索引原理与慢查询优化 浏览目录 索引介绍方法类型 聚合索引辅助索引 测试索引 正确使用索引 组合索引 注意事项 查询计划 慢查询日志 大数据量分页优化 一.索引介绍方法类型 1. ...

  6. wepy - 小程序开发框架

    2017-09-23 运行命令. wepy build --watch 2017-11-06 wepy一直用的1.5.8,同事有一次安装了最新的1.6.0就报错了... unexpected char ...

  7. base64编码是什么1

    首先明确一点base64 是一种编码格式.就想UNICODE一样,能在电脑上表示所有字符,或者换句话说通过编码能让电脑理解你想要表示的字符(因为电脑只知道0和1 ) 就像ascII 中 0100 00 ...

  8. 【C#】解析C#程序集的加载和反射

    目录结构: contents structure [+] 程序集 程序集的加载 发现程序集中的类型 反射对类型成员的常规操作 发现类型的成员 创建类型的实例 绑定句柄减少进程的内存消耗 解析自定义特性 ...

  9. Python之开发自动化管理工具paramiko

    一.paramiko模块使用 1)远程执行主机命令获取结果 方法一 import paramiko # 创建SSH对象 ssh = paramiko.SSHClient() # 允许连接不在know_ ...

  10. 2019.01.20 bzoj5158 Alice&Bob(拓扑排序+贪心)

    传送门 短代码简单题. 题意简述:对于一个序列XXX,定义其两个伴随序列a,ba,ba,b,aia_iai​表示以第iii个数结尾的最长上升子序列长度,bib_ibi​表示以第iii个数开头的最长下降 ...