UVALive 6916 Punching Robot dp
Punching Robot
题目连接:
Description
In this problem, you are given a grid map of N ×M (N rows and M
columns) where the rows are numbered 1. . . N from top to bottom,
and the columns are numbered 1. . . M from left to right. Your task
is to count in how many ways you can reach cell (N, M) from cell
(1, 1) given that you are only allowed to move right or downward
at any time, i.e. if your current location is at cell (r, c), then you
can only move to cell (r + 1, c) or (r, c + 1). However, we quickly
realized that this kind of problem could be too easy for you, thus,
not challenging. Therefore, we decided to put K punching robots
in the map. Each punching robot is able to punch any object which
lies in any of 3×3 cells centered at the robot (Figure 1). To simplify
the problem, you may assume that the punching areas of any robot
do not overlap.
Your (new) task is: count in how many ways you can reach cell (N, M) from cell (1, 1) without
being punched by any robot, given that you are only allowed to move right or downward at any time.
As the output can be very large, you need to modulo the output by 997. For example, consider the
following map of 4 x 10 with two punching robots at (3, 3) and (2, 8).
Figure 2.
In this example, there are 4 ways to reach (4, 10) from (1, 1) without being punched by any of the
robots. All those 4 paths only differ when they go from (1, 5) to (4, 6):
• . . . , (1, 5), (1, 6), (2, 6), (3, 6), (4, 6), . . .
• . . . , (1, 5), (2, 5), (2, 6), (3, 6), (4, 6), . . .
• . . . , (1, 5), (2, 5), (3, 5), (3, 6), (4, 6), . . .
• . . . , (1, 5), (2, 5), (3, 5), (4, 5), (4, 6),
Meanwhile, there is only one unique path from (1, 1) to (1, 5) and from (4, 6) to (4, 10).
Input
The first line of input contains an integer T (T ≤ 100) denoting the number of cases. Each case begins
with three integers: N, M, and K (2 ≤ N, M ≤ 1, 000, 000; 0 ≤ K ≤ 10) denoting the size of the map
and the number of punching robots respectively. The following K lines, each contains two integers: Ri
and Ci (1 < Ri < N; 1 < Ci < M) denoting the position of i-th robot (row and column respectively)
in the map. You are guaranteed that, for any two robots, the row difference or the column difference
will be at least 3, i.e. no two robots’ punching areas are overlapping. You are also guaranteed that cell
(1, 1) and cell (N, M) are not in punching areas of any robots.
Output
For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the answer
for that case modulo by 997.
Explanation for 2nd sample case:
The following figure represents the map for the 2nd sample
case.
As you can see, there is no way you can reach (3, 5) from (1,
- without being punched by the robot.
Sample Input
4
4 10 2
3 3
2 8
3 5 1
2 3
5 5 0
10 9 3
9 3
6 8
3 4
Sample Output
Case #1: 4
Case #2: 0
Case #3: 70
Case #4: 648
Hint
题意
给你个(n,m)的方格,里面有一些坏的3*3位置,问你从(1,1)到(n,m)的方案数是多少
题解:
我们把3*3的拆成9个坏点,那么这道题就和CF的某道题一样了
http://www.cnblogs.com/qscqesze/p/4669136.html
但是这道题的模数是997,所以取逆元的时候可能有问题,你需要把997单独拿出来讨论一下就好了。
代码
#include<bits/stdc++.h>
using namespace std;
#define maxn 3000005
#define mod 997
typedef long long ll;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int cas=0;
struct Point
{
long long x,y;
}points[maxn];
bool cmp(Point a,Point b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
ll p=mod;
ll fac[maxn],num[maxn];
ll qpow(ll a,ll b)
{
ll ans=1;a%=mod;
for(ll i=b;i;i>>=1,a=a*a%mod)
if(i&1)ans=ans*a%mod;
return ans;
}
ll C(ll n,ll m)
{
if(m>n||m<0)return 0;
if(num[n]!=num[n-m]+num[m]) return 0;
ll s1=fac[n],s2=fac[n-m]*fac[m]%mod;
return s1*qpow(s2,mod-2)%mod;
}
ll f[maxn];
int main()
{
fac[0]=1;
for(int i=1;i<maxn;i++)
{
if(i%997!=0)
fac[i]=fac[i-1]*i%mod,num[i]=num[i-1];
else
{
num[i]=num[i-1];
int tmp=i;
while(tmp%997==0)
num[i]++,tmp/=997;
fac[i]=fac[i-1]*tmp;
}
}
int t;scanf("%d",&t);
while(t--){
int n=read(),m=read(),k=read();
for(int i=1;i<=k;i++)
{
points[i*9-8].x=read();
points[i*9-8].y=read();
points[i*9-8].x-=1;
points[i*9-8].y-=1;
points[i*9-7].x=points[i*9-8].x-1;
points[i*9-7].y=points[i*9-8].y-1;
points[i*9-6].x=points[i*9-8].x;
points[i*9-6].y=points[i*9-8].y-1;
points[i*9-5].x=points[i*9-8].x+1;
points[i*9-5].y=points[i*9-8].y-1;
points[i*9-4].x=points[i*9-8].x-1;
points[i*9-4].y=points[i*9-8].y;
points[i*9-3].x=points[i*9-8].x+1;
points[i*9-3].y=points[i*9-8].y;
points[i*9-2].x=points[i*9-8].x-1;
points[i*9-2].y=points[i*9-8].y+1;
points[i*9-1].x=points[i*9-8].x;
points[i*9-1].y=points[i*9-8].y+1;
points[i*9].x=points[i*9-8].x+1;
points[i*9].y=points[i*9-8].y+1;
}
k*=9;
points[++k].x=n-1;
points[k].y=m-1;
sort(points+1,points+k+1,cmp);
for(int i=1;i<=k;i++)
{
f[i]=C(points[i].x+points[i].y,points[i].x);
for(int j=1;j<i;j++)
{
if(points[j].y<=points[i].y)
{
f[i]+=(p-f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
f[i]%=p;
}
}
}
printf("Case #%d: %lld\n",++cas,f[k]%p);
}
}
UVALive 6916 Punching Robot dp的更多相关文章
- UVALive - 6916 Punching Robot Lucas+dp
题目链接: http://acm.hust.edu.cn/vjudge/problem/96344 Punching Robot Time Limit: 1000MS64bit IO Format: ...
- 【BZOJ1408】[Noi2002]Robot DP+数学
[BZOJ1408][Noi2002]Robot Description Input Output Sample Input 3 2 1 3 2 5 1 Sample Output 8 6 75 HI ...
- UVALive - 6952 Cent Savings dp
题目链接: http://acm.hust.edu.cn/vjudge/problem/116998 Cent Savings Time Limit: 3000MS 问题描述 To host a re ...
- UVALive - 6529 找规律+dp
题目链接: http://acm.hust.edu.cn/vjudge/problem/47664 Eleven Time Limit: 5000MS 问题描述 In this problem, we ...
- UVaLive 6801 Sequence (计数DP)
题意:给定一个序列,有 n 个数,只有01,然后你进行k次操作,把所有的1变成0,求有多种方法. 析:DP是很明显的,dp[i][j] 表示进行第 i 次操作,剩下 j 个1,然后操作就两种,把1变成 ...
- UVaLive 6697 Homework Evaluation (DP)
题意:给出一个长字符串,再给一个短字符串,进行匹配,如果第i个恰好匹配,则 +8,:如果不匹配,可以给长或短字符串添加-,先后匹配,这样-3, 连续的长字符串添加-,需要减去一个4:也可不给添加-,则 ...
- UVaLive 7374 Racing Gems (DP,LIS)
题意:以辆赛车可以从x轴上任意点出发,他的水平速度允许他向每向上移动v个单位,就能向左或向右移动v/r个单位(也就是它的辐射范围是个等腰三角形) 现在赛车从x轴出发,问它在到达终点前能吃到的最多钻石. ...
- UVALive 6947 Improvements(DP+树状数组)
[题目链接] https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=sho ...
- UVaLive 3490 Generator (KMP + DP + Gauss)
题意:随机字母组成一个串,有一个目标串,当这个由随机字母组成的串出现目标串就停止,求这个随机字母组成串的期望长度. 析:由于只要包含目标串就可以停止,所以可以先把这个串进行处理,也就是KMP,然后dp ...
随机推荐
- html5 canvas 垂直渐变描边
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- CTSC2018&APIO2018游记
CTSC2018&APIO2018游记 Day 0 傍晚出发,从长沙通往帝都的软卧哟. 然而长沙某中学坐高铁比我们晚出发还早到 Day 1 为了正经地写游记我决定忍住不在博客里吐槽酒店. 午饭 ...
- 初始ASP.NET数据控件【续 ListView】
ListView控件 ListView控件可以用来显示数据,它还提供编辑,删除,插入,分页与排序等功能.ListView是GridView与DataList的融合体,它具有GridView控件编辑 ...
- nginx 日志切割(也适用于docker)
=============================================== 2019/4/6_第2次修改 ccb_warlock 201 ...
- Scala 学习笔记(2)之类和对象
Scala 的类大抵和 Java 是类似的,简单的例子如下: class MyClass { var myField : Int = 0; def this(value : Int) = { this ...
- Qt编程之悲惨世界
最近需要给人写点基于QtWebkit的代码,算是领教了Qt编程的痛苦之处. QNetworkConfigurationManager::isOnline() 只有在编译平台上能运行,拷贝到其他Wind ...
- ubuntu下spark安装配置
一.安装vmware虚拟机 二.在虚拟机上安装ubuntu12.04操作系统 三.安装jdk1.8.0_25 http://www.oracle.com/technetwork/java/javase ...
- SOCKET简单爬虫实现代码和使用方法
抓取一个网页内容非常容易,常见的方式有curl.file_get_contents.socket以及文件操作函数file.fopen等. 下面使用SOCKET下的fsockopen()函数访问Web服 ...
- linux 安装redis4.0
1.安装redis 第一步:下载redis安装包 wget http://download.redis.io/releases/redis-4.0.6.tar.gz 1 2 3 4 5 6 7 8 9 ...
- 利用HTML5定位功能,实现在百度地图上定位(转)
原文:利用HTML5定位功能,实现在百度地图上定位 代码如下: 测试浏览器:ie11定位成功率100%,Safari定位成功率97%,(add by zhj :在手机上测试(用微信内置浏览器打开),无 ...