Punching Robot

题目连接:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4928

Description

In this problem, you are given a grid map of N ×M (N rows and M

columns) where the rows are numbered 1. . . N from top to bottom,

and the columns are numbered 1. . . M from left to right. Your task

is to count in how many ways you can reach cell (N, M) from cell

(1, 1) given that you are only allowed to move right or downward

at any time, i.e. if your current location is at cell (r, c), then you

can only move to cell (r + 1, c) or (r, c + 1). However, we quickly

realized that this kind of problem could be too easy for you, thus,

not challenging. Therefore, we decided to put K punching robots

in the map. Each punching robot is able to punch any object which

lies in any of 3×3 cells centered at the robot (Figure 1). To simplify

the problem, you may assume that the punching areas of any robot

do not overlap.

Your (new) task is: count in how many ways you can reach cell (N, M) from cell (1, 1) without

being punched by any robot, given that you are only allowed to move right or downward at any time.

As the output can be very large, you need to modulo the output by 997. For example, consider the

following map of 4 x 10 with two punching robots at (3, 3) and (2, 8).

Figure 2.

In this example, there are 4 ways to reach (4, 10) from (1, 1) without being punched by any of the

robots. All those 4 paths only differ when they go from (1, 5) to (4, 6):

• . . . , (1, 5), (1, 6), (2, 6), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (2, 6), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (3, 5), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (3, 5), (4, 5), (4, 6),

Meanwhile, there is only one unique path from (1, 1) to (1, 5) and from (4, 6) to (4, 10).

Input

The first line of input contains an integer T (T ≤ 100) denoting the number of cases. Each case begins

with three integers: N, M, and K (2 ≤ N, M ≤ 1, 000, 000; 0 ≤ K ≤ 10) denoting the size of the map

and the number of punching robots respectively. The following K lines, each contains two integers: Ri

and Ci (1 < Ri < N; 1 < Ci < M) denoting the position of i-th robot (row and column respectively)

in the map. You are guaranteed that, for any two robots, the row difference or the column difference

will be at least 3, i.e. no two robots’ punching areas are overlapping. You are also guaranteed that cell

(1, 1) and cell (N, M) are not in punching areas of any robots.

Output

For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the answer

for that case modulo by 997.

Explanation for 2nd sample case:

The following figure represents the map for the 2nd sample

case.

As you can see, there is no way you can reach (3, 5) from (1,

  1. without being punched by the robot.

Sample Input

4

4 10 2

3 3

2 8

3 5 1

2 3

5 5 0

10 9 3

9 3

6 8

3 4

Sample Output

Case #1: 4

Case #2: 0

Case #3: 70

Case #4: 648

Hint

题意

给你个(n,m)的方格,里面有一些坏的3*3位置,问你从(1,1)到(n,m)的方案数是多少

题解:

我们把3*3的拆成9个坏点,那么这道题就和CF的某道题一样了

http://www.cnblogs.com/qscqesze/p/4669136.html

但是这道题的模数是997,所以取逆元的时候可能有问题,你需要把997单独拿出来讨论一下就好了。

代码

#include<bits/stdc++.h>
using namespace std;
#define maxn 3000005
#define mod 997
typedef long long ll;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int cas=0;
struct Point
{
long long x,y;
}points[maxn];
bool cmp(Point a,Point b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
ll p=mod;
ll fac[maxn],num[maxn];
ll qpow(ll a,ll b)
{
ll ans=1;a%=mod;
for(ll i=b;i;i>>=1,a=a*a%mod)
if(i&1)ans=ans*a%mod;
return ans;
}
ll C(ll n,ll m)
{
if(m>n||m<0)return 0;
if(num[n]!=num[n-m]+num[m]) return 0;
ll s1=fac[n],s2=fac[n-m]*fac[m]%mod;
return s1*qpow(s2,mod-2)%mod;
}
ll f[maxn];
int main()
{
fac[0]=1;
for(int i=1;i<maxn;i++)
{
if(i%997!=0)
fac[i]=fac[i-1]*i%mod,num[i]=num[i-1];
else
{
num[i]=num[i-1];
int tmp=i;
while(tmp%997==0)
num[i]++,tmp/=997;
fac[i]=fac[i-1]*tmp;
}
}
int t;scanf("%d",&t);
while(t--){
int n=read(),m=read(),k=read();
for(int i=1;i<=k;i++)
{
points[i*9-8].x=read();
points[i*9-8].y=read();
points[i*9-8].x-=1;
points[i*9-8].y-=1; points[i*9-7].x=points[i*9-8].x-1;
points[i*9-7].y=points[i*9-8].y-1; points[i*9-6].x=points[i*9-8].x;
points[i*9-6].y=points[i*9-8].y-1; points[i*9-5].x=points[i*9-8].x+1;
points[i*9-5].y=points[i*9-8].y-1; points[i*9-4].x=points[i*9-8].x-1;
points[i*9-4].y=points[i*9-8].y; points[i*9-3].x=points[i*9-8].x+1;
points[i*9-3].y=points[i*9-8].y; points[i*9-2].x=points[i*9-8].x-1;
points[i*9-2].y=points[i*9-8].y+1; points[i*9-1].x=points[i*9-8].x;
points[i*9-1].y=points[i*9-8].y+1; points[i*9].x=points[i*9-8].x+1;
points[i*9].y=points[i*9-8].y+1;
}
k*=9;
points[++k].x=n-1;
points[k].y=m-1;
sort(points+1,points+k+1,cmp);
for(int i=1;i<=k;i++)
{
f[i]=C(points[i].x+points[i].y,points[i].x);
for(int j=1;j<i;j++)
{
if(points[j].y<=points[i].y)
{
f[i]+=(p-f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
f[i]%=p;
}
}
}
printf("Case #%d: %lld\n",++cas,f[k]%p);
}
}

UVALive 6916 Punching Robot dp的更多相关文章

  1. UVALive - 6916 Punching Robot Lucas+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/96344 Punching Robot Time Limit: 1000MS64bit IO Format: ...

  2. 【BZOJ1408】[Noi2002]Robot DP+数学

    [BZOJ1408][Noi2002]Robot Description Input Output Sample Input 3 2 1 3 2 5 1 Sample Output 8 6 75 HI ...

  3. UVALive - 6952 Cent Savings dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/116998 Cent Savings Time Limit: 3000MS 问题描述 To host a re ...

  4. UVALive - 6529 找规律+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/47664 Eleven Time Limit: 5000MS 问题描述 In this problem, we ...

  5. UVaLive 6801 Sequence (计数DP)

    题意:给定一个序列,有 n 个数,只有01,然后你进行k次操作,把所有的1变成0,求有多种方法. 析:DP是很明显的,dp[i][j] 表示进行第 i 次操作,剩下 j 个1,然后操作就两种,把1变成 ...

  6. UVaLive 6697 Homework Evaluation (DP)

    题意:给出一个长字符串,再给一个短字符串,进行匹配,如果第i个恰好匹配,则 +8,:如果不匹配,可以给长或短字符串添加-,先后匹配,这样-3, 连续的长字符串添加-,需要减去一个4:也可不给添加-,则 ...

  7. UVaLive 7374 Racing Gems (DP,LIS)

    题意:以辆赛车可以从x轴上任意点出发,他的水平速度允许他向每向上移动v个单位,就能向左或向右移动v/r个单位(也就是它的辐射范围是个等腰三角形) 现在赛车从x轴出发,问它在到达终点前能吃到的最多钻石. ...

  8. UVALive 6947 Improvements(DP+树状数组)

    [题目链接] https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=sho ...

  9. UVaLive 3490 Generator (KMP + DP + Gauss)

    题意:随机字母组成一个串,有一个目标串,当这个由随机字母组成的串出现目标串就停止,求这个随机字母组成串的期望长度. 析:由于只要包含目标串就可以停止,所以可以先把这个串进行处理,也就是KMP,然后dp ...

随机推荐

  1. Phalcon框架之———— 2.0升级到3.0 问题Model验证问题解决

    Github源码:https://github.com/phalcon/cphalcon/tree/master/phalcon/validation/validator Phalcon 2.0 Mo ...

  2. JavaScript继承详解(五)

    在本章中,我们将分析John Resig关于JavaScript继承的一个实现 - Simple JavaScript Inheritance. John Resig作为jQuery的创始人而声名在外 ...

  3. Sql语句 表中相同的记录(某个字段)只显示一条,按照时间排序显示最大或最小

    原始表数据:

  4. RabbitMQ集群使用Haproxy负载均衡

    (1).下载 http://www.haproxy.org/#down (2).解压 tar -zxvf haproxy-1.5.18.tar.gz (3).安装 1).编译 make TARGET= ...

  5. python代码在IDE下调试设置命令行参数

    带命令行参数的代码在IDE下调试,需要把参数赋值,本文mark一下具体的命令行参数在代码中赋值方法. if __name__ == "__main__": sys.argv = [ ...

  6. node koa2

    http://www.codes51.com/itwd/4316421.html 问题: (node.js)nodejs koa ctx=> 报错描述: 刚开始接触 koa 一直提示 ctx=& ...

  7. Java多态概述

    多态 所谓多态,实际上就是一个对象的多种状态: 下面例子中,Tiger可以看做Tiger,也可以看做Animal Cat  可以看做Cat,也可以看做Animal Dog 可以看做Dog,也可以看做A ...

  8. java 捕获所有异常

    1.) 通过捕获异常类型的基类Exception就可以处理所有类型的异常.(事实上还有其它的基类,但Exception是同编程活动相关的基类) 2.)因为Exception是与编程有关的所有异常类的基 ...

  9. java Comparator和Comparable(比较器)

    Comparable: 一个类实现了Camparable接口则表明这个类的对象之间是可以相互比较的,这个类对象组成的集合就可以直接使用sort方法排序,sort方法调用compareTo()方法里定义 ...

  10. 记一些使用PyQt的问题

    本文自用,日常记录,不断更新 环境 1.使用 PyCharm IDE 2.PyQt5 3. 扩展配置 PyUIC转换后的代码处理 PyUIC 用于 将 QtDesigner 生成的 .ui 文件转换为 ...