Punching Robot

题目连接:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4928

Description

In this problem, you are given a grid map of N ×M (N rows and M

columns) where the rows are numbered 1. . . N from top to bottom,

and the columns are numbered 1. . . M from left to right. Your task

is to count in how many ways you can reach cell (N, M) from cell

(1, 1) given that you are only allowed to move right or downward

at any time, i.e. if your current location is at cell (r, c), then you

can only move to cell (r + 1, c) or (r, c + 1). However, we quickly

realized that this kind of problem could be too easy for you, thus,

not challenging. Therefore, we decided to put K punching robots

in the map. Each punching robot is able to punch any object which

lies in any of 3×3 cells centered at the robot (Figure 1). To simplify

the problem, you may assume that the punching areas of any robot

do not overlap.

Your (new) task is: count in how many ways you can reach cell (N, M) from cell (1, 1) without

being punched by any robot, given that you are only allowed to move right or downward at any time.

As the output can be very large, you need to modulo the output by 997. For example, consider the

following map of 4 x 10 with two punching robots at (3, 3) and (2, 8).

Figure 2.

In this example, there are 4 ways to reach (4, 10) from (1, 1) without being punched by any of the

robots. All those 4 paths only differ when they go from (1, 5) to (4, 6):

• . . . , (1, 5), (1, 6), (2, 6), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (2, 6), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (3, 5), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (3, 5), (4, 5), (4, 6),

Meanwhile, there is only one unique path from (1, 1) to (1, 5) and from (4, 6) to (4, 10).

Input

The first line of input contains an integer T (T ≤ 100) denoting the number of cases. Each case begins

with three integers: N, M, and K (2 ≤ N, M ≤ 1, 000, 000; 0 ≤ K ≤ 10) denoting the size of the map

and the number of punching robots respectively. The following K lines, each contains two integers: Ri

and Ci (1 < Ri < N; 1 < Ci < M) denoting the position of i-th robot (row and column respectively)

in the map. You are guaranteed that, for any two robots, the row difference or the column difference

will be at least 3, i.e. no two robots’ punching areas are overlapping. You are also guaranteed that cell

(1, 1) and cell (N, M) are not in punching areas of any robots.

Output

For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the answer

for that case modulo by 997.

Explanation for 2nd sample case:

The following figure represents the map for the 2nd sample

case.

As you can see, there is no way you can reach (3, 5) from (1,

  1. without being punched by the robot.

Sample Input

4

4 10 2

3 3

2 8

3 5 1

2 3

5 5 0

10 9 3

9 3

6 8

3 4

Sample Output

Case #1: 4

Case #2: 0

Case #3: 70

Case #4: 648

Hint

题意

给你个(n,m)的方格,里面有一些坏的3*3位置,问你从(1,1)到(n,m)的方案数是多少

题解:

我们把3*3的拆成9个坏点,那么这道题就和CF的某道题一样了

http://www.cnblogs.com/qscqesze/p/4669136.html

但是这道题的模数是997,所以取逆元的时候可能有问题,你需要把997单独拿出来讨论一下就好了。

代码

#include<bits/stdc++.h>
using namespace std;
#define maxn 3000005
#define mod 997
typedef long long ll;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int cas=0;
struct Point
{
long long x,y;
}points[maxn];
bool cmp(Point a,Point b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
ll p=mod;
ll fac[maxn],num[maxn];
ll qpow(ll a,ll b)
{
ll ans=1;a%=mod;
for(ll i=b;i;i>>=1,a=a*a%mod)
if(i&1)ans=ans*a%mod;
return ans;
}
ll C(ll n,ll m)
{
if(m>n||m<0)return 0;
if(num[n]!=num[n-m]+num[m]) return 0;
ll s1=fac[n],s2=fac[n-m]*fac[m]%mod;
return s1*qpow(s2,mod-2)%mod;
}
ll f[maxn];
int main()
{
fac[0]=1;
for(int i=1;i<maxn;i++)
{
if(i%997!=0)
fac[i]=fac[i-1]*i%mod,num[i]=num[i-1];
else
{
num[i]=num[i-1];
int tmp=i;
while(tmp%997==0)
num[i]++,tmp/=997;
fac[i]=fac[i-1]*tmp;
}
}
int t;scanf("%d",&t);
while(t--){
int n=read(),m=read(),k=read();
for(int i=1;i<=k;i++)
{
points[i*9-8].x=read();
points[i*9-8].y=read();
points[i*9-8].x-=1;
points[i*9-8].y-=1; points[i*9-7].x=points[i*9-8].x-1;
points[i*9-7].y=points[i*9-8].y-1; points[i*9-6].x=points[i*9-8].x;
points[i*9-6].y=points[i*9-8].y-1; points[i*9-5].x=points[i*9-8].x+1;
points[i*9-5].y=points[i*9-8].y-1; points[i*9-4].x=points[i*9-8].x-1;
points[i*9-4].y=points[i*9-8].y; points[i*9-3].x=points[i*9-8].x+1;
points[i*9-3].y=points[i*9-8].y; points[i*9-2].x=points[i*9-8].x-1;
points[i*9-2].y=points[i*9-8].y+1; points[i*9-1].x=points[i*9-8].x;
points[i*9-1].y=points[i*9-8].y+1; points[i*9].x=points[i*9-8].x+1;
points[i*9].y=points[i*9-8].y+1;
}
k*=9;
points[++k].x=n-1;
points[k].y=m-1;
sort(points+1,points+k+1,cmp);
for(int i=1;i<=k;i++)
{
f[i]=C(points[i].x+points[i].y,points[i].x);
for(int j=1;j<i;j++)
{
if(points[j].y<=points[i].y)
{
f[i]+=(p-f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
f[i]%=p;
}
}
}
printf("Case #%d: %lld\n",++cas,f[k]%p);
}
}

UVALive 6916 Punching Robot dp的更多相关文章

  1. UVALive - 6916 Punching Robot Lucas+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/96344 Punching Robot Time Limit: 1000MS64bit IO Format: ...

  2. 【BZOJ1408】[Noi2002]Robot DP+数学

    [BZOJ1408][Noi2002]Robot Description Input Output Sample Input 3 2 1 3 2 5 1 Sample Output 8 6 75 HI ...

  3. UVALive - 6952 Cent Savings dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/116998 Cent Savings Time Limit: 3000MS 问题描述 To host a re ...

  4. UVALive - 6529 找规律+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/47664 Eleven Time Limit: 5000MS 问题描述 In this problem, we ...

  5. UVaLive 6801 Sequence (计数DP)

    题意:给定一个序列,有 n 个数,只有01,然后你进行k次操作,把所有的1变成0,求有多种方法. 析:DP是很明显的,dp[i][j] 表示进行第 i 次操作,剩下 j 个1,然后操作就两种,把1变成 ...

  6. UVaLive 6697 Homework Evaluation (DP)

    题意:给出一个长字符串,再给一个短字符串,进行匹配,如果第i个恰好匹配,则 +8,:如果不匹配,可以给长或短字符串添加-,先后匹配,这样-3, 连续的长字符串添加-,需要减去一个4:也可不给添加-,则 ...

  7. UVaLive 7374 Racing Gems (DP,LIS)

    题意:以辆赛车可以从x轴上任意点出发,他的水平速度允许他向每向上移动v个单位,就能向左或向右移动v/r个单位(也就是它的辐射范围是个等腰三角形) 现在赛车从x轴出发,问它在到达终点前能吃到的最多钻石. ...

  8. UVALive 6947 Improvements(DP+树状数组)

    [题目链接] https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=sho ...

  9. UVaLive 3490 Generator (KMP + DP + Gauss)

    题意:随机字母组成一个串,有一个目标串,当这个由随机字母组成的串出现目标串就停止,求这个随机字母组成串的期望长度. 析:由于只要包含目标串就可以停止,所以可以先把这个串进行处理,也就是KMP,然后dp ...

随机推荐

  1. bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...

  2. git 查看一个分支是否被合并过

    1.查看该分支的提交历史 git log 分支名 2.git log master |grep comitid 如果包含,就证明已经合并过 3.git branch -d 分支名,如果报错,就是没合并 ...

  3. Java入门系列(九)Java API

    String,StringBuilder,StringBuffer三者的区别 1.首先说运行速度,或者说是执行速度 在这方面运行速度快慢为:StringBuilder > StringBuffe ...

  4. 8个提高效率的CSS实用工具

    CSS,也就是Cascading Style Sheets,推出于1997年,差不多是17年前,至此为我们开发网页大开方便之门,协助我们制作出一个又一个惊艳绝伦的网站设计和模板,提升了我们的创造能力, ...

  5. 20155203 2016-2017-2 《Java程序设计》第7周学习总结

    20155203 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 1.Lambda表达式.(使用interface函数接口) 2.Lambda的方法参考Met ...

  6. ffmpeg查看音频文件信息

    查看音频文件的信息(基于本地路径) import subprocess import json path = r'D:\learn\download\NosVJ60QCIs0b8PVHMPomZJsr ...

  7. 关于gb2312编码和utf8码的一个问题

    ANSI(注意拼写不是ASCII)并不是“一种”编码,而是“多种”编码的统称.在简体中文Windows上,ANSI指GBK编码:在繁体中文Windows上,ANSI指Big5编码:在英文Windows ...

  8. 一份最中肯的Java学习路线+资源分享(拒绝傻逼式分享)

    这是一篇针对Java初学者,或者说在Java学习路线上出了一些问题(不知道该学什么.不知道整体的学习路线是什么样的) 第一步:Java基础(一个月左右) 推荐视频: 下面的是黑马内部视频,我比较推荐的 ...

  9. 用《舌尖2》去理解C#中的多态和开闭原则

    昨天晚上看了<舌尖上的中国2>第一集,特别的感人,尤其是看到帮别人割麦子的麦客,一亩地开价200,雇主只肯给100,脸上的那种纠结和无可奈何.还有长着大眼睛的跳跳鱼,很可爱,不过最终还是被 ...

  10. casperjs 知乎登陆

    phantom.casperTest = true; phantom.outputEncoding="utf-8"; var fs = require('fs'); var cas ...