P1144 最短路计数

题目描述

给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\)。问从顶点1开始,到其他每个点的最短路有几条。

输入输出格式

输入格式:

第一行包含2个正整数\(N,M\),为图的顶点数与边数。

接下来\(M\)行,每行2个正整数\(x,y\),表示有一条顶点\(x\)连向顶点\(y\)的边,请注意可能有自环与重边。

输出格式:

共\(N\)行,每行一个非负整数,第\(i\)行输出从顶点1到顶点\(i\)有多少条不同的最短路,由于答案有可能会很大,你只需要输出\(ans\) \(mod\) 100003后的结果即可。如果无法到达顶点\(i\)则输出0 。


最短路计数,这个用spfa写的。

思路和disj是一样的社交网络


Code:

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int N=1000010;
const int mod=100003;
int head[N],to[N<<2],next[N<<2],cnt0;
void add(int u,int v)
{
next[++cnt0]=head[u];to[cnt0]=v;head[u]=cnt0;
next[++cnt0]=head[v];to[cnt0]=u;head[v]=cnt0;
}
int n,m,dis[N],used[N],cnt[N];
queue <int > q;
void spfa()
{
memset(dis,0x3f,sizeof(dis));
dis[1]=0;cnt[1]=1;
q.push(1);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i;i=next[i])
{
int v=to[i];
if(dis[v]>dis[u]+1)
{
dis[v]=dis[u]+1;
cnt[v]=cnt[u];
if(!used[v])
{
used[v]=1;
q.push(v);
}
}
else if(dis[v]==dis[u]+1)
cnt[v]=(cnt[v]+cnt[u])%mod;
}
}
}
int main()
{
scanf("%d%d",&n,&m);
int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
}
spfa();
for(int i=1;i<=n;i++)
printf("%d\n",cnt[i]);
return 0;
}

2018.7.1

洛谷 P1144 最短路计数 解题报告的更多相关文章

  1. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  2. 洛谷——P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  3. 洛谷 P1144 最短路计数 题解

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 输入格式 第一行包含\(2\)个正 ...

  4. 洛谷P1144 最短路计数 及其引申思考

    图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...

  5. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  6. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  7. 洛谷 P1144 最短路计数

    传送门:https://www.luogu.org/problemnew/show/P1144 这虽然是一道普及+的题,然而我发现我现在还没做过,这也就直接导致我今天模拟T2只杠了个暴力分…… 那这道 ...

  8. 洛谷P1144——最短路计数

    题目:https://www.luogu.org/problemnew/show/P1144 spfa跑最短路的同时记录cnt数组表示到达方案数. 代码如下: #include<iostream ...

  9. 洛谷P1144 最短路计数【堆优化dijkstra】

    题目:https://www.luogu.org/problemnew/show/P1144 题意:问1到各个节点的最短路有多少条. 思路:如果松弛的时候发现是相等的,说明可以经过该点的最短路径到达当 ...

随机推荐

  1. 使用fastjson,gson解析null值的时候键保留

    由于业务需求...所以查阅资料,总结如下: 使用gson实现方法:只需要把new Gson()改为: new GsonBuilder().serializeNulls().create(); 就可以了 ...

  2. 20155334 曹翔 Exp2 后门原理与实践

    20155334 曹翔 Exp2 后门原理与实践 不多废话直接上实验过程,本实验的所有端口都是5334. 一.实验过程 查询主机Windows和虚拟机kali的ip地址: Windows获得Linux ...

  3. NetWork——描述一次完整的网络请求过程

    台根DNS,根DNS服务器收到请求后会返回负责这个域名(.net)的服务器的一个IP,本地DNS服务器使用该IP信息联系负责.net域的这台服务器.这台负责.net域的服务器收到请求后,如果自己无法解 ...

  4. OpenCV实战:人脸关键点检测(FaceMark)

    Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author:    Amusi Date:       2018-03-20 ...

  5. Centos7下vim的table键修改为4个空格

    1.要有root用户权限 2.已经安装vim 3.编辑/etc/vim/vimrc 文件,添加set ts=4 vim /etc/vimrc #按大写G到最后一行,添加set ts= set ts = ...

  6. [CF1017G]The Tree[树链剖分+线段树]

    题意 给一棵一开始 \(n\) 个点全是白色的树,以 \(1\) 为根,支持三种操作: 1.将某一个点变黑,如果已经是黑色则该操作对所有儿子生效. 2.将一棵子树改成白色. 3.询问某个点的颜色. \ ...

  7. Android 模拟输入那点事

    因工作原因,需要用到模拟输入这个东东,查阅了一些资料,实现方式有多种,我大概分为两类,命令行类和程序类. 命令行类包括自动化测试组件monkeyrunner,getevent/setevent命令,i ...

  8. Java类加载器学习笔记

    今后一段时间会全面读一下<深入理解Java虚拟机> 在这里先记一下在网上看到的几篇介绍 类加载器 的文章,等读到虚拟机类加载机制再详细介绍. 超详细Java中的ClassLoader详解 ...

  9. Jmeter(十二)_打印时间戳

    Jmeter中提供了一种函数,可以打印时间戳,如下图 年: yyyy 月:MM 日:dd 时: HH 分: mm 秒:ss 关于时间戳的格式,可以自由组合定义,这里我写成这样 yyyy-MM-dd H ...

  10. aiohttp基本及进阶使用

    客户端使用 发起请求 让我们从导入aiohttp模块开始: import aiohttp 好啦,我们来尝试获取一个web页面.比如我们来获取下GitHub的时间轴. async with aiohtt ...