Maximum Subarray LT53
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
Idea 1: For all pairs of integers i and j satisfying 0 <= i <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far, take advange of:
sum of nums[i..j] = sum of nums[i..j-1] + nums[j]
the sum of all continuous subarray starting at i can be calculated in O(n), hence we have a quadratic algorithm.
Time complexity: O(n2)
Space complexity: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int sz = nums.length;
int maxSumSoFar = Integer.MIN_VALUE;
for(int i = 0; i < sz; ++i) {
int sumStartHere = 0;
for(int j = i; j < sz; ++j) {
sumStartHere += nums[j];
maxSumSoFar = Math.max(maxSumSoFar, sumStartHere);
}
}
return maxSumSoFar;
}
}
Idea 1.a: With the help of a cumulative sum array, cumarr[0...i], which can be computed in linear time, it allows the sum to be computed quickly,
sum[i..j] = cumarr[j] - cumarr[i-1].
Time complexity: O(n2)
Space complexity: O(n)
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz];
cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
}
int maxSumSoFar = Integer.MIN_VALUE;
for(int i = 0; i < sz; ++i) {
for(int j = i; j < sz; ++j) {
int previousSum = 0;
if(i > 0) {
previousSum = cumuSum[i-1];
}
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - previousSum);
}
}
return maxSumSoFar;
}
}
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz];
cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
}
int maxSumSoFar = Integer.MIN_VALUE;
for(int j = 0; j < sz; ++j) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j]);
for(int i = 1; i <= j; ++i) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - cumuSum[i-1]);
}
}
return maxSumSoFar;
}
}
Idea 2: divide and conquer. Divide into two subproblems, recusively find the maximum in subvectors(max[i..k], max[k..j]) and find the maximum of crossing subvectors(max[i..k..j]), return the max of max[i..k], max[k..j] and max[i..k..j].
Time complexity: O(nlgn)
Space complexity: O(lgn) the stack
class Solution {
private int maxSubArrayHelper(int[] nums, int l, int u) {
if(l >= u) return Integer.MIN_VALUE;
int mid = l + (u - l)/2;
int leftMaxSum = nums[mid];
int sum = 0;
for(int left = mid; left >=l; --left) {
sum += nums[left];
leftMaxSum = Math.max(leftMaxSum, sum);
}
int rightMaxSum = 0;
sum = 0;
for(int right = mid+1; right < u; ++right) {
sum += nums[right];
rightMaxSum = Math.max(rightMaxSum, sum);
}
return Math.max(leftMaxSum + rightMaxSum,
Math.max(maxSubArrayHelper(nums, l, mid), maxSubArrayHelper(nums, mid+1, u)));
}
public int maxSubArray(int[] nums) {
return maxSubArrayHelper(nums, 0, nums.length);
}
}
Idea 3: Extend the solution to the next element in the array. How can we extend a solution for nums[0...i-1] to nums[0..i].
The key is the max sum ended in each element, if extending to the next element,
maxHere(i) = Math.max( maxHere(i-1) + nums[i], nums[i])
maxSoFar = Math.max(maxSoFar, maxHere)
Time compleixty: O(n)
Space complexity: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int maxHere = 0;
int maxSoFar = Integer.MIN_VALUE;
for(int num: nums) {
maxHere = Math.max(maxHere, 0) + num;
maxSoFar = Math.max(maxSoFar, maxHere);
}
return maxSoFar;
}
}
Idea 3.a: Use the cumulative sum,
maxHere = cumuSum(i) - minCumuSum
cumuSum(i) = cumuSum(i-1) + nums[i]
maxSoFar = Math.max(maxSoFar, maxHere) = Math.max(maxSoFar, cumuSum - minCumuSum)
Time compleixty: O(n)
Space complexity: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int min = 0;
int cumuSum = 0;
int maxSoFar = Integer.MIN_VALUE;
for(int num: nums) {
cumuSum += num;
maxSoFar = Math.max(maxSoFar, cumuSum - min);
min = Math.min(min, cumuSum);
}
return maxSoFar;
}
}
Maximum Subarray LT53的更多相关文章
- [LintCode] Maximum Subarray 最大子数组
Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...
- 【leetcode】Maximum Subarray (53)
1. Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...
- 算法:寻找maximum subarray
<算法导论>一书中演示分治算法的第二个例子,第一个例子是递归排序,较为简单.寻找maximum subarray稍微复杂点. 题目是这样的:给定序列x = [1, -4, 4, 4, 5, ...
- LEETCODE —— Maximum Subarray [一维DP]
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- 【leetcode】Maximum Subarray
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- maximum subarray problem
In computer science, the maximum subarray problem is the task of finding the contiguous subarray wit ...
- (转)Maximum subarray problem--Kadane’s Algorithm
转自:http://kartikkukreja.wordpress.com/2013/06/17/kadanes-algorithm/ 本来打算自己写的,后来看到上述链接的博客已经说得很清楚了,就不重 ...
- 3月7日 Maximum Subarray
间隔2天,继续开始写LeetCodeOj. 原题: Maximum Subarray 其实这题很早就看了,也知道怎么做,在<编程珠玑>中有提到,求最大连续子序列,其实只需要O(n)的复杂度 ...
- LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关
Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...
随机推荐
- 2.7、CDH 搭建Hadoop在安装(使用向导设置群集)
步骤7:使用向导设置群集 完成“ 群集安装”向导后,“ 群集设置”向导将自动启动.以下部分将指导您完成向导的每个页面: 选择服务 分配角色 设置数据库 查看更改 首次运行命令 恭喜! 选择服务 “ 选 ...
- pip安装插件库
升级:python -m pip install --upgrade pip 读excel:pip install xlrd 写入excel:pip install xlwt
- metasploit framework(十):SSH扫描、爆破
SSH版本扫描 SSH密码爆破 设置爆破字典 run开始
- View可以设置tag携带数据
View可以设置tag携带数据. 例子 初始化:ImageView iv_brand2 设置:iv_brand2.setTag(strB ...
- Django项目的创建与管理和pycharm与Github的秘密
随笔 - 174 文章 - 21 评论 - 19 Django项目创建与管理 1.主题 这部分教程主要介绍如何通过Pycharm创建.管理.运行一个Django工程.对于Django模块的相关 ...
- JS在严格模式和非严格模式的区别
若想在严格模式下使用JS,需要在文件的第一行加上“use strict”,在实际开发中,常常将“use strict”加入到闭包的内部 具体是: 整个脚本中使用:在这个JavaScript文件开头写' ...
- postman使用方法
Postman sending requests 打开Postman,可以看到界面分成左右两个部分,右边是我们后头要讲的collection,左边是现在要讲的request builder.在requ ...
- no module named cv2
运行python脚本时报错: ImportError: No module named cv2 第一想法: 使用命令: pip install cv2 会报错找不到请求的版本 解决方法: 使用命令 p ...
- AVL树与红黑树(R-B树)的区别与联系
AVL树(http://baike.baidu.com/view/593144.htm?fr=aladdin),又称(严格)高度平衡的二叉搜索树.其他的平衡树还有:红黑树.Treap.伸展树.SBT. ...
- TOJ2811: Bessie's Weight Problem(完全背包)
传送门(<---可以点的) 描述 Bessie, like so many of her sisters, has put on a few too many pounds enjoying t ...