Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Idea 1: For all pairs of integers i and j satisfying 0 <= i  <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far, take advange of:

  sum of nums[i..j] = sum of nums[i..j-1] + nums[j]

the sum of all continuous subarray starting at i can be calculated in O(n), hence we have a quadratic algorithm.

Time complexity: O(n2)

Space complexity: O(1)

class Solution {
public int maxSubArray(int[] nums) {
int sz = nums.length;
int maxSumSoFar = Integer.MIN_VALUE; for(int i = 0; i < sz; ++i) {
int sumStartHere = 0;
for(int j = i; j < sz; ++j) {
sumStartHere += nums[j];
maxSumSoFar = Math.max(maxSumSoFar, sumStartHere);
}
}
return maxSumSoFar;
}
}

Idea 1.a:  With the help of a cumulative sum array, cumarr[0...i], which can be computed in linear time,  it allows the sum to be computed quickly,

sum[i..j] = cumarr[j] - cumarr[i-1].

Time complexity: O(n2)

Space complexity: O(n)

class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int i = 0; i < sz; ++i) {
for(int j = i; j < sz; ++j) {
int previousSum = 0;
if(i > 0) {
previousSum = cumuSum[i-1];
}
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - previousSum);
}
} return maxSumSoFar;
}
}
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int j = 0; j < sz; ++j) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j]);
for(int i = 1; i <= j; ++i) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - cumuSum[i-1]);
}
} return maxSumSoFar;
}
}

Idea 2: divide and conquer. Divide into two subproblems, recusively find the maximum in subvectors(max[i..k], max[k..j]) and find the maximum of crossing subvectors(max[i..k..j]), return the max of max[i..k], max[k..j] and max[i..k..j].

Time complexity: O(nlgn)

Space complexity: O(lgn) the stack

class Solution {
private int maxSubArrayHelper(int[] nums, int l, int u) {
if(l >= u) return Integer.MIN_VALUE;
int mid = l + (u - l)/2; int leftMaxSum = nums[mid];
int sum = 0;
for(int left = mid; left >=l; --left) {
sum += nums[left];
leftMaxSum = Math.max(leftMaxSum, sum);
} int rightMaxSum = 0;
sum = 0;
for(int right = mid+1; right < u; ++right) {
sum += nums[right];
rightMaxSum = Math.max(rightMaxSum, sum);
} return Math.max(leftMaxSum + rightMaxSum,
Math.max(maxSubArrayHelper(nums, l, mid), maxSubArrayHelper(nums, mid+1, u)));
} public int maxSubArray(int[] nums) {
return maxSubArrayHelper(nums, 0, nums.length);
}
}

Idea 3: Extend the solution to the next element in the array. How can we extend a solution for nums[0...i-1] to nums[0..i].

The key is the max sum ended in each element, if extending to the next element,

maxHere(i) = Math.max( maxHere(i-1) + nums[i], nums[i])

maxSoFar = Math.max(maxSoFar, maxHere)

Time compleixty: O(n)

Space complexity: O(1)

class Solution {
public int maxSubArray(int[] nums) {
int maxHere = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
maxHere = Math.max(maxHere, 0) + num;
maxSoFar = Math.max(maxSoFar, maxHere);
} return maxSoFar;
}
}

Idea 3.a: Use the cumulative sum,

maxHere = cumuSum(i) - minCumuSum

cumuSum(i) = cumuSum(i-1) + nums[i]

maxSoFar = Math.max(maxSoFar, maxHere) = Math.max(maxSoFar, cumuSum - minCumuSum)

Time compleixty: O(n)

Space complexity: O(1)

class Solution {
public int maxSubArray(int[] nums) {
int min = 0;
int cumuSum = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
cumuSum += num;
maxSoFar = Math.max(maxSoFar, cumuSum - min);
min = Math.min(min, cumuSum);
} return maxSoFar;
}
}

Maximum Subarray LT53的更多相关文章

  1. [LintCode] Maximum Subarray 最大子数组

    Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...

  2. 【leetcode】Maximum Subarray (53)

    1.   Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...

  3. 算法:寻找maximum subarray

    <算法导论>一书中演示分治算法的第二个例子,第一个例子是递归排序,较为简单.寻找maximum subarray稍微复杂点. 题目是这样的:给定序列x = [1, -4, 4, 4, 5, ...

  4. LEETCODE —— Maximum Subarray [一维DP]

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  5. 【leetcode】Maximum Subarray

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  6. maximum subarray problem

    In computer science, the maximum subarray problem is the task of finding the contiguous subarray wit ...

  7. (转)Maximum subarray problem--Kadane’s Algorithm

    转自:http://kartikkukreja.wordpress.com/2013/06/17/kadanes-algorithm/ 本来打算自己写的,后来看到上述链接的博客已经说得很清楚了,就不重 ...

  8. 3月7日 Maximum Subarray

    间隔2天,继续开始写LeetCodeOj. 原题: Maximum Subarray 其实这题很早就看了,也知道怎么做,在<编程珠玑>中有提到,求最大连续子序列,其实只需要O(n)的复杂度 ...

  9. LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关

    Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...

随机推荐

  1. 详解 Tomcat 的连接数与线程池

      前言 在使用tomcat时,经常会遇到连接数.线程数之类的配置问题,要真正理解这些概念,必须先了解Tomcat的连接器(Connector). 在前面的文章 详解Tomcat配置文件server. ...

  2. 媒体类型 & 媒体查询

    [媒体类型 & 媒体查询] @media 规则允许在相同样式表为不同媒体设置不同的样式. 在下面的例子告诉我们浏览器屏幕上显示一个14像素的Verdana字体样式.但是如果页面打印,将是10个 ...

  3. Oracle OLAP 与 OLTP 介绍

    文章出处:http://blog.csdn.net/tianlesoftware/article/details/5794844 感谢原作者的分享. 数据处理大致可以分成两大类:联机事务处理OLTP( ...

  4. Docker容器进入-命令行只显示-bash-4.1#

    bash-4.1# cp /etc/skel/.bash* /root/ bash-4.1# su [root@4a841f025562 ~]# [root@4a841f025562 ~]# [roo ...

  5. ASP.Net MVC 中a标签的onclick时间和href同时存在时候的处理

    问题出现: 本次项目在用到下载文件.导出文件的时候,需要在下载.导出之前进行判断,最初使用方式一.二,没能解决问题 方式一:使用href直接跳转controller方法,以下载为例: public A ...

  6. 最小生成树kruskal模板

    算法思路:每次选取权值最小的边,判断这两个点是否在同一个集合内,如果在则跳过,如果不在则加上这条边的权值 可以使用并查集储存结点,可以快速判断结点是否在同一集合内. #include<iostr ...

  7. @RequestMapping 和 @GetMapping @PostMapping 区别

      @RequestMapping   和  @GetMapping @PostMapping 区别 @GetMapping是一个组合注解,是@RequestMapping(method = Requ ...

  8. for all entries

    1.必须要判断for all entries in后面的内表是否为空,如果为空,where条件中与内表中字段进行比较的结果全部为真,会导致取出非常多的数据,影响系统性能.2.使用for all ent ...

  9. java中钩子方法的概念

    钩子方法源于设计模式中模板方法(Template Method)模式,模板方法模式的概念为:在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中.模板方法使得子类可以在不改变算法结构的情况下,重新 ...

  10. bean生命周期_Junit测试使用factory模式

    在面试某互联网_保险 公司, 被问到了spring中bean的生命周期,不禁联想到我们之前作 junit测试时,使用了Factory模式,而没有用Mock.