python 回溯法 子集树模板 系列 —— 12、选排问题
问题
从n个元素中挑选m个元素进行排列,每个元素最多可重复r次。其中m∈[2,n],r∈[1,m]。
如:从4个元素中挑选3个元素进行排列,每个元素最多可重复r次。
分析
解x的长度是固定的,为m。
对于解x,先排第0个位置的元素x[0],再排第1个位置的元素x[1]。我们把后者看作是前者的一种状态,即x[1]是x[0]的一种状态!!
一般地,把x[k]看作x[k-1]的状态空间a中的一种状态,我们要做的就是遍历a[k-1]的所有状态。
那么,套用子集树模板即可。
代码
'''
选排问题
从n个元素中挑选m个元素进行排列,每个元素最多可重复r次。其中m∈[2,n],r∈[1,m]。
作者:hhh5460
时间:2017年6月2日 09时05分
声明:此算法版权归hhh5460所有
'''
n = 4
a = ['a','b','c','d']
m = 3 # 从4个中挑3个
r = 2 # 每个元素最多可重复2
x = [0]*m # 一个解(m元0-1数组)
X = [] # 一组解
# 冲突检测
def conflict(k):
global n, r, x, X, a
# 部分解内的元素x[k]不能超过r
if x[:k+1].count(x[k]) > r:
return True
return False # 无冲突
# 用子集树模板实现选排问题
def perm(k): # 到达第k个元素
global n,m, a, x, X
if k == m: # 超出最尾的元素
print(x)
#X.append(x[:]) # 保存(一个解)
else:
for i in a: # 遍历x[k-1]的状态空间a,其它的事情交给剪枝函数!
x[k] = i
if not conflict(k): # 剪枝
perm(k+1)
# 测试
perm(0) # 从x[0]开始排列
效果图

python 回溯法 子集树模板 系列 —— 12、选排问题的更多相关文章
- python 回溯法 子集树模板 系列 —— 17、找零问题
问题 有面额10元.5元.2元.1元的硬币,数量分别为3个.5个.7个.12个.现在需要给顾客找零16元,要求硬币的个数最少,应该如何找零?或者指出该问题无解. 分析 元素--状态空间分析大法:四种面 ...
- python 回溯法 子集树模板 系列 —— 16、爬楼梯
问题 某楼梯有n层台阶,每步只能走1级台阶,或2级台阶.从下向上爬楼梯,有多少种爬法? 分析 这个问题之前用分治法解决过.但是,这里我要用回溯法子集树模板解决它. 祭出元素-状态空间分析大法:每一步是 ...
- python 回溯法 子集树模板 系列 —— 9、旅行商问题(TSP)
问题 旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初 ...
- python 回溯法 子集树模板 系列 —— 18、马踏棋盘
问题 将马放到国际象棋的8*8棋盘board上的某个方格中,马按走棋规则进行移动,走遍棋盘上的64个方格,要求每个方格进入且只进入一次,找出一种可行的方案. 分析 说明:这个图是5*5的棋盘. 图片来 ...
- python 回溯法 子集树模板 系列 —— 15、总结
作者:hhh5460 时间:2017年6月3日 用回溯法子集树模板解决了这么多问题,这里总结一下使用回溯法子集树模板的步骤: 1.确定元素及其状态空间(精髓) 对每一个元素,遍历它的状态空间,其它的事 ...
- python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)
问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog ...
- python 回溯法 子集树模板 系列 —— 10、m着色问题
问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化问题 若一个图最少 ...
- python 回溯法 子集树模板 系列 —— 8、图的遍历
问题 一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E -- ...
- python 回溯法 子集树模板 系列 —— 3、0-1背包问题
问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其 ...
随机推荐
- Expo大作战(二十七)--expo sdk api之Util(expo自带工具类),tackSnapshotAsync,Svg,SQLite
简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...
- (个人记录)Python2 与Python3的版本区别
现在还有些开源模块还没有更新到python3 ,不了解版本区别,无法对不合适的地方进行更改. 由于只追求向Python3靠近,所以对于python2的特别用法不探究. 此文不补全所有版本区别,仅作档案 ...
- Python基础一数据类型之数字类型
摘要: python基础一中提到了数据类型,这里主要讲解的是数字类型. 数字类型: 1,整型 2,长整型 3,浮点型 4,复数型 1,整型(int) 定义a = 1 通过type函数查看数据类型,整型 ...
- 关于npm run build打包后css样式中的图片失效的问题(如background)
平时run dev都能正常显示的css背景图片在npm run build打包后竟然不显示了(写在标签对中的图片都可以正常显示),而且dist/static/img目录下是确实有这张图片的,于是查看打 ...
- python 多进程 Event的使用
Event事件 多进程的使用 通俗点儿讲 就是 1. Event().wait() 插入在进程中插入一个标记(flag) 默认为 false 然后flag为false时 程序会停止运 ...
- Georgia Tech Online Master of Science in Computer Science 项目经验分享
Georgia Tech Online Master of Science in Computer Science 项目经验分享 Posted on 2014/04/22 项目关键词:工科名校,计算机 ...
- hadoop集群为分布式搭建
1.准备Linux环境设置虚拟机网络 1.0点击VMware快捷方式,右键打开文件所在位置 -> 双击vmnetcfg.exe -> VMnet1 host-only ->修改 ...
- Redis系列七:redis持久化
redis支持RDB和AOF两种持久化机制,持久化可以避免因进程退出而造成数据丢失 一.RDB持久化 RDB持久化把当前进程数据生成快照(.rdb)文件保存到硬盘的过程,有手动触发和自动触发 手动触发 ...
- php api接口安全设计 sign理论
一. url请求的参数包括:timestamp,token, username,sign 1. timestamp: 时间戮 2. token: 登陆验证时,验证成功后,生成唯一的token(可以为u ...
- Python各类并发模版
以后在写一些Python并发的时候参考下面这个模块,小西总结的挺全的,直接搬砖了. 进程并发 from multiprocessing import Pool, Manager def func(d, ...