使用python实现人脸检测<转载>
原文地址:https://www.cnblogs.com/vipstone/p/8884991.html
====================================================
技术实现思路
图片转换成灰色(去除色彩干扰,让图片识别更准确)
图片上画矩形
使用训练分类器查找人脸
具体实现代码
图片转换成灰色
使用OpenCV的cvtColor()转换图片颜色,代码如下:
import cv2 filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath)
# 转换灰色
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 显示图像
cv2.imshow("Image", gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
图片上画矩形
使用OpenCV的rectangle()绘制矩形,代码如下:
import cv2 filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色
x = y = 10 # 坐标
w = 100 # 矩形大小(宽、高)
color = (0, 0, 255) # 定义绘制颜色
cv2.rectangle(img, (x, y), (x + w, y + w), color, 1) # 绘制矩形
cv2.imshow("Image", img) # 显示图像
cv2.waitKey(0)
cv2.destroyAllWindows() # 释放所有的窗体资源
使用训练分类器查找人脸
在使用OpenCV的人脸检测之前,需要一个人脸训练模型,格式是xml的,我们这里使用OpenCV提供好的人脸分类模型xml,下载地址:https://github.com/opencv/opencv/tree/master/data/haarcascades 可全部下载到本地,本人存放的路径是:C:\Python36\Lib\site-packages\opencv-master\data\haarcascades.
完整实现代码:
import cv2 filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器
classifier = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
color = (0, 255, 0) # 定义绘制颜色
# 调用识别人脸
faceRects = classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects): # 大于0则检测到人脸
for faceRect in faceRects: # 单独框出每一张人脸
x, y, w, h = faceRect
# 框出人脸
cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
# 左眼
cv2.circle(img, (x + w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#右眼
cv2.circle(img, (x + 3 * w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#嘴巴
cv2.rectangle(img, (x + 3 * w // 8, y + 3 * h // 4),
(x + 5 * w // 8, y + 7 * h // 8), color) cv2.imshow("image", img) # 显示图像
c = cv2.waitKey(10) cv2.waitKey(0)
cv2.destroyAllWindows()
使用python实现人脸检测<转载>的更多相关文章
- OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...
- 手把手教你如何用 OpenCV + Python 实现人脸检测
配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...
- 使用python实现人脸检测
人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多张脸 ...
- Python视频人脸检测识别
案例 这里我们还是使用 opencv 中自带了 haar人脸特征分类器,通过读取一段视频来识别其中的人脸. 代码实现: 动图有点花,讲究着看吧: 如果是捕捉摄像头,只需要改变以下代码即可: c ...
- opencv+python实时人脸检测、磨皮
import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("d ...
- Python学习--使用dlib、opencv进行人脸检测标注
参考自https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/ 在原有基础上有一部分的修改(image ...
- OpenCV + Python 人脸检测
必备知识 Haar-like opencv api 读取图片 灰度转换 画图 显示图像 获取人脸识别训练数据 探测人脸 处理人脸探测的结果 实例 图片素材 人脸检测代码 人脸检测结果 总结 下午的时候 ...
- 人脸检测? 对Python来说太简单, 调用dlib包就可以完成
"Dlib 是一个现代化的 C ++ 工具包,包含用于创建复杂软件的机器学习算法和工具 " .它使您能够直接在 Python 中运行许多任务,其中一个例子就是人脸检测. 安装 dl ...
- Python学习案例之视频人脸检测识别
前言 上一篇博文与大家分享了简单的图片人脸识别技术,其实在实际应用中,很多是通过视频流的方式进行识别,比如人脸识别通道门禁考勤系统.人脸动态跟踪识别系统等等. 案例 这里我们还是使用 opencv 中 ...
随机推荐
- PHP程序员的进阶之路
第1阶段:初级PHP程序员 重点:把LNMP搞熟练(核心是安装配置基本操作)目标:能够完成基本的LNMP环境安装,简单配置维护:能够做基本的简单系统的PHP开发:能够在PHP中型系统中支持某个PHP功 ...
- centos7 搭建DHCP服务器
一.DHCP简单讲解 DHCP就是动态主机配置协议(Dynamic Host Configuration Protocol)是一种基于UDP协议且仅限用于局域网的网络协议,它的目的就是为了减轻TCP/ ...
- [UE4]宏
宏和函数的区别 “展开”就是直接将宏代码直接复制粘贴替换到所有使用当前宏的地方.这个跟C++中的宏是一样的. 1.宏可以有多个入口,多个出口,函数只有一个入口,一个出口 2.宏的参数可以使用“Exec ...
- nginx配置location总结及rewrite规则写法 (若配置reload或restart不生效就stop start)
location正则写法 一个示例: location = / { # 精确匹配 / ,主机名后面不能带任何字符串 [ configuration A ] } location / { # 因为所有的 ...
- 00010 - cut选取命令详解
定义 正如其名,cut的工作就是“剪”,具体的说就是在文件中负责剪切数据用的.cut是以每一行为一个处理对象的,这种机制和sed是一样的 剪切依据 cut命令主要是接受三个定位方法: 第一,字节(by ...
- (转)Linux netstat命令详解
简介 Netstat 命令用于显示各种网络相关信息,如网络连接,路由表,接口状态 (Interface Statistics),masquerade 连接,多播成员 (Multicast Member ...
- CRM 2016 IFrame 函数修改 父页面字段
IFrame js 代码: parent.Xrm.Page.getAttribute("new_xxxx").setValue(123); 当然,可以设置 new_xxxx 字段的 ...
- Spark2.0.0源码编译
Hive默认使用MapReduce作为执行引擎,即Hive on mr,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hive on Spark.由于MapRedu ...
- python 实现排序算法(二)-合并排序(递归法)
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Nov 21 22:28:09 201 ...
- concurrent.futures进线程池和协程
concurrent.futures 异步执行进程线程池的模块,一个抽象类,定义submit,map,shutdown方法 from concurrent.futures import Process ...