https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

医药统计项目联系QQ:231469242

正态分布也称常态分布或常态分配,是连续随机变量概率分布的一种,是在数理统计的理论与实际应用中占有重要地位的一种理论分布。自然界人类社会,心理与教育中大量现象均按正态形式分布。例如能力的高低,学生成绩的好坏,人们的社会态度,行为表现以及身高、体重等身体状态。

(高斯Carl Friedrich Gauss)

正态分布是由阿伯拉罕·德莫弗尔(Abraham de Moivre)1733年发现的。其他几位学者如拉普拉斯(Marquis de Laplace)、高斯 (Carl Friedrich Gauss)对正态分布的研究也做出了贡献,故有时称正态分布为高斯分布。

正态分布的函数(又称密度函数)为

标准正态分布这两个参数分别为0与1。

标准正态分布的密度函数可写作:

(正态分布三个标准差的概率分布) 

所有正太分布都可以转化成标准正态分布。

期望值μ决定了其位置,其标准差σ决定了分布的幅度。

正态分布具有很大医学意义。正态分布的应用某些医学现象,如同质群体的身高、红细胞数、血红蛋白量、胆固醇等,以及实验中的随机误差,呈现为正态或近似正态分布。

我们提出一个常见的身高概率问题:假设男性平均身高175,标准差6;女性平均身高168,  标准差3;随机抽取一个女性和男性,女性高于男性随机概率是多少?

我们不需要通过复杂公式来计算。只需让计算机产生足够多的随机值来模拟计算,最后得到答案。

下面我们用Python的蒙特卡洛建模正态分布函数,解决这个男女身高概率问题。

(matplotlib绘制两个正态分布,红色表示女性,蓝色表示男性)

程序模拟10万个随机值,最后算出结果0.14727

即女性高于男性随机概率为0.14727

测试环境Anaconda Python2.7

源代码已经本人测试无问题

# -*- coding: utf-8 -*-

‘’’

By Toby ,Blog:

http://www.cnblogs.com/webRobot/

’’’
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
import seaborn as sns
import math,pylab,matplotlib,numpy
from matplotlib.font_manager import FontProperties
#设置中文字体
font=FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=15)
#测试n次
n=100000
#标准正太分布
normalDistribution=stats.norm(175,6)
#方差较大正态分布
normalDistribution1=stats.norm(168,3)
#一次随机
def Random_single():
    array_male=normalDistribution.rvs(1)
    array_female=normalDistribution1.rvs(1)
    male=array_male[0]
    female=array_female[0]
    if female>male:
       return True
    else:
       return False
#n次随机,返回count(女性高于男性的次数)
def Multiple_random(n):
    count=0
    for i in range(n):
       value=Random_single()
       if value==True:
          count+=1
    return count
# 计算女性高于男性概率
def Probability(n):
    count=Multiple_random(n)
    p=count*1.0/n
    return p
probability=Probability(n)
print '随机次数',n
print '女性高于男性概率:',probability
#绘图
x=np.arange(60,220)
y=normalDistribution.pdf(x)
y1=normalDistribution1.pdf(x)
plt.plot(x,y,label="male")
plt.plot(x,y1,'r',label="female")
plt.xlabel("x")
plt.ylabel("probability density")
#plt.title("Normal distribution:mean=%.1f,standard
deviation=%.1f"%(mean,std))
plt.title("Normal distribution")
plt.legend()
plt.show()

python+正态分布+蒙特卡洛预测男女身高概率!的更多相关文章

  1. python 实现 灰色预测 GM(1,1)模型 灰色系统 预测 灰色预测公式推导

    来源公式推导连接 https://blog.csdn.net/qq_36387683/article/details/88554434 关键词:灰色预测 python 实现 灰色预测 GM(1,1)模 ...

  2. 用python做时间序列预测九:ARIMA模型简介

    本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving ...

  3. caffe机器学习自带图片分类器classify.py实现输出预测结果的概率及caffe的web_demo例子运行实例

    caffe机器学习环境搭建及python接口编译参见我的上一篇博客:机器学习caffe环境搭建--redhat7.1和caffe的python接口编译 1.运行caffe图片分类器python接口 还 ...

  4. 利用Python统计微信联系人男女比例以及简单的地区分布

    寒暄的话不多说,直接进入主题. 运行效果图: [准备环境] Python版本:v3.5及其以上 开发工具:随意,此处使用Pycharm [依赖包] 1.itchat (CMD运行:pip instal ...

  5. python数据分析Adult-Salary预测

    具体文档戳下方网站 https://pan.wps.cn/l/s4ojed8 代码如下: import pandas as pdimport numpy as npimport matplotlib. ...

  6. python多分类预测模版,输出支持度,多种分类器,str的csv转float

    预测结果为1到11中的1个 首先加载数据,训练数据,训练标签,预测数据,预测标签: if __name__=="__main__": importTrainContentdata( ...

  7. Facebook支持python的开源预测工具Prophet

    Facebook 宣布开源一款基于 Python 和 R 语言的数据预测工具――“Prophet”,即“先知”.取名倒是非常直白. Facebook 表示,Prophet 相比现有预测工具更加人性化, ...

  8. ROC曲线是通过样本点分类概率画出的 例如某一个sample预测为1概率为0.6 预测为0概率0.4这样画出来,此外如果曲线不是特别平滑的话,那么很可能存在过拟合的情况

    ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operat ...

  9. python实现贝叶斯网络的概率推导(Probabilistic Inference)

    写在前面 这是HIT2019人工智能实验三,由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 实现贝叶斯网络的概率推导(Probabilistic Inference) 具体实验指导书 ...

随机推荐

  1. HTML基础语法

    目录 HTML基础语法 1.全局架构标签 2.标题 3.段落 4.文本 5.属性 6.链接 7.图片 8.列表 9.表格 10.区块 11.布局 12.表单 13.框架 14.头部 HTML基础语法 ...

  2. JAVA eclipse Maven项目红叹号解决方案

    我是通过 Windows --> show view --> problems 查看到发现 ch.qos.logback 1.1.1 出现了错误, 于是我换成了 ch.qos.logbac ...

  3. CSS快速入门-属性和伪类

    一.属性选择器 <div class="gradefather"> hello1 <div name="son">hello2 < ...

  4. 软件测试_测试工具_APP测试工具_对比

    以下是我自己整理的APP测试工具对比,各个工具相关并不全面.尤其关于收费一项,我只是针对自己公司的实际情况进行对比的,每个工具还有其他收费套餐可以选择,详情可进入相关官网进行查看 以下是部分官网链接: ...

  5. Word或者WPS里证件照的背景底色和像素调整

    证件照的背景底色调整和像素调整         关于证件照的背景底色自行调整,比较方便的方法是用Word或者WPS来进行调整,当然也可以利用两者相结合的方法来进行调整,下面来系统的说一下这两种方式.此 ...

  6. [转]An overview of Openvswitch implementation

    This is NOT a tutorial on how to use openvswitch, this is for developers who want to know the implem ...

  7. 三种迭代Java ArrayList方法及比较

    闲来无事,研究一下Java Collection,首先是ArrayList. 通过三种方式遍历了长度为100000的ArrayList. import java.util.*; public clas ...

  8. PAT甲题题解-1036. Boys vs Girls (25)-找最大最小,大水题

    题意:给出n个人的姓名.性别.ID.分数,让你找出其中哪个妹纸分数最高.哪个汉子分数最低.以及他们的差如果没有妹纸或者汉子,则对应输出Absent,差用NA代替. 就是for一遍找最大最小值,水题 # ...

  9. 【Beta阶段】第二次Scrum Meeting!

    每日任务内容: 本次会议为第二次Scrum Meeting会议~ 由于本次会议项目经理召开时间较晚,所以在公寓7层召开,所以女生没来…召开时间大家集会10分钟,经理与后端探讨20分钟. 队员 昨日完成 ...

  10. 《Linux内核分析》第一周学习报告

    第一周:计算机是如何工作的 姓名:王玮怡  学号:20135116 第一节 存储程序计算机工作模型(冯诺依曼体系结构) IP指向的内存地址,取指令执行,完成后,IP值自加一,取下一条指令再执行. AP ...