python+正态分布+蒙特卡洛预测男女身高概率!

医药统计项目联系QQ:231469242
正态分布也称常态分布或常态分配,是连续随机变量概率分布的一种,是在数理统计的理论与实际应用中占有重要地位的一种理论分布。自然界人类社会,心理与教育中大量现象均按正态形式分布。例如能力的高低,学生成绩的好坏,人们的社会态度,行为表现以及身高、体重等身体状态。
(高斯Carl Friedrich Gauss)

正态分布是由阿伯拉罕·德莫弗尔(Abraham de Moivre)1733年发现的。其他几位学者如拉普拉斯(Marquis de Laplace)、高斯 (Carl Friedrich Gauss)对正态分布的研究也做出了贡献,故有时称正态分布为高斯分布。
正态分布的函数(又称密度函数)为

标准正态分布这两个参数分别为0与1。
标准正态分布的密度函数可写作:

(正态分布三个标准差的概率分布)

所有正太分布都可以转化成标准正态分布。
期望值μ决定了其位置,其标准差σ决定了分布的幅度。

正态分布具有很大医学意义。正态分布的应用某些医学现象,如同质群体的身高、红细胞数、血红蛋白量、胆固醇等,以及实验中的随机误差,呈现为正态或近似正态分布。
我们提出一个常见的身高概率问题:假设男性平均身高175,标准差6;女性平均身高168, 标准差3;随机抽取一个女性和男性,女性高于男性随机概率是多少?
我们不需要通过复杂公式来计算。只需让计算机产生足够多的随机值来模拟计算,最后得到答案。
下面我们用Python的蒙特卡洛建模正态分布函数,解决这个男女身高概率问题。
(matplotlib绘制两个正态分布,红色表示女性,蓝色表示男性)

程序模拟10万个随机值,最后算出结果0.14727
即女性高于男性随机概率为0.14727

测试环境Anaconda Python2.7
源代码已经本人测试无问题
# -*- coding: utf-8 -*-
‘’’
By Toby ,Blog:
http://www.cnblogs.com/webRobot/
’’’
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
import seaborn as sns
import math,pylab,matplotlib,numpy
from matplotlib.font_manager import FontProperties
#设置中文字体
font=FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=15)
#测试n次
n=100000
#标准正太分布
normalDistribution=stats.norm(175,6)
#方差较大正态分布
normalDistribution1=stats.norm(168,3)
#一次随机
def Random_single():
array_male=normalDistribution.rvs(1)
array_female=normalDistribution1.rvs(1)
male=array_male[0]
female=array_female[0]
if female>male:
return True
else:
return False
#n次随机,返回count(女性高于男性的次数)
def Multiple_random(n):
count=0
for i in range(n):
value=Random_single()
if value==True:
count+=1
return count
# 计算女性高于男性概率
def Probability(n):
count=Multiple_random(n)
p=count*1.0/n
return p
probability=Probability(n)
print '随机次数',n
print '女性高于男性概率:',probability
#绘图
x=np.arange(60,220)
y=normalDistribution.pdf(x)
y1=normalDistribution1.pdf(x)
plt.plot(x,y,label="male")
plt.plot(x,y1,'r',label="female")
plt.xlabel("x")
plt.ylabel("probability density")
#plt.title("Normal distribution:mean=%.1f,standard
deviation=%.1f"%(mean,std))
plt.title("Normal distribution")
plt.legend()
plt.show()
python+正态分布+蒙特卡洛预测男女身高概率!的更多相关文章
- python 实现 灰色预测 GM(1,1)模型 灰色系统 预测 灰色预测公式推导
来源公式推导连接 https://blog.csdn.net/qq_36387683/article/details/88554434 关键词:灰色预测 python 实现 灰色预测 GM(1,1)模 ...
- 用python做时间序列预测九:ARIMA模型简介
本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving ...
- caffe机器学习自带图片分类器classify.py实现输出预测结果的概率及caffe的web_demo例子运行实例
caffe机器学习环境搭建及python接口编译参见我的上一篇博客:机器学习caffe环境搭建--redhat7.1和caffe的python接口编译 1.运行caffe图片分类器python接口 还 ...
- 利用Python统计微信联系人男女比例以及简单的地区分布
寒暄的话不多说,直接进入主题. 运行效果图: [准备环境] Python版本:v3.5及其以上 开发工具:随意,此处使用Pycharm [依赖包] 1.itchat (CMD运行:pip instal ...
- python数据分析Adult-Salary预测
具体文档戳下方网站 https://pan.wps.cn/l/s4ojed8 代码如下: import pandas as pdimport numpy as npimport matplotlib. ...
- python多分类预测模版,输出支持度,多种分类器,str的csv转float
预测结果为1到11中的1个 首先加载数据,训练数据,训练标签,预测数据,预测标签: if __name__=="__main__": importTrainContentdata( ...
- Facebook支持python的开源预测工具Prophet
Facebook 宣布开源一款基于 Python 和 R 语言的数据预测工具――“Prophet”,即“先知”.取名倒是非常直白. Facebook 表示,Prophet 相比现有预测工具更加人性化, ...
- ROC曲线是通过样本点分类概率画出的 例如某一个sample预测为1概率为0.6 预测为0概率0.4这样画出来,此外如果曲线不是特别平滑的话,那么很可能存在过拟合的情况
ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operat ...
- python实现贝叶斯网络的概率推导(Probabilistic Inference)
写在前面 这是HIT2019人工智能实验三,由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 实现贝叶斯网络的概率推导(Probabilistic Inference) 具体实验指导书 ...
随机推荐
- Codeforces 948D Perfect Security(字典树)
题目链接:Perfect Security 题意:给出N个数代表密码,再给出N个数代表key.现在要将key组排序,使key组和密码组的亦或所形成的组字典序最小. 题解:要使密码组里面每个数都找到能使 ...
- C# ConcurrentBag的实现原理
目录 一.前言 二.ConcurrentBag类 三. ConcurrentBag线程安全实现原理 1. ConcurrentBag的私有字段 2. 用于数据存储的TrehadLocalList类 3 ...
- IE=edge 让浏览器使用最新的渲染模式
Bootstrap不支持IE的兼容模式.为了让IE浏览器运行最新的渲染模式,建议将此 <meta> 标签加入到你的页面中: <metahttp-equiv="X-UA-Co ...
- 原生和jquery 的 ajax
form数据的序列化: $('#submit').click(function(){ $('#form').serialize(); //会根据input里面的name,把数据序列化成字符串:eg:n ...
- LeetCode 141. Linked List Cycle环形链表 (C++)
题目: Given a linked list, determine if it has a cycle in it. To represent a cycle in the given linked ...
- C#回调函数的简单讲解与应用例子(最简单讲解,大神绕道)
本博客一直以来的宗旨就是:用最简单的方式讲清楚不复杂的问题. 因为本人也很菜所以也没法讲太复杂HHHHHH...... 所以如果哪天某个大神看到了觉得讲的有问题欢迎指出. 话不多说进入正题.. ——— ...
- git hub 使用心得
git中重要的概念: 工作目录(working directory):在工作目录中修改文件,修改后的文件状态是modified,新添加的文件是untracked,通过git add命令将文件保存到st ...
- Supervised Hashing with Kernels, KSH
Notation 该论文中应用到较多符号,为避免混淆,在此进行解释: n:原始数据集的大小 l:实验中用于监督学习的数据集大小(矩阵S行/列的大小) m:辅助数据集,用于得到基于核的哈希函数 r:比特 ...
- ubuntu 12.04下 ns3的下载 安装
这个的内容我主要是参考了 http://blog.sina.com.cn/s/blog_7ec2ab360102wwsk.html 这个链接的学习,基本上过程没有出现的问题. 就是这个链接少了测试的一 ...
- c#程序阅读分析
using System; using System.Collections.Generic; using System.Text; namespace FindTheNumber { class P ...
