本文讲一下一些基本的矩阵优化DP的方法技巧。

定义三个矩阵A,B,C,其中行和列分别为$m\times n,n \times p,m\times p$,(其中行是从上往下数的,列是从左往右数的)

$C_{i,j}=\sum_{k=1}^{n}A_{i,k}\times B_{k,j}$

矩阵乘法具有结合律,但没有交换律,可以乘方、求逆。

做矩阵优化DP的题目步骤:

$1\quad$把$DP$方程推出来(假如不能手推,可以先打$10$项左右的表,然后再写一个程序找每一项的系数,一般不会超过$5$项,否则矩阵太大了)

$2\quad$打横把系数写出来(注意$i-1$先写,接下来是$i-2$,以此类推,没有的项补$0$)

$3\quad$把矩阵补成项数$\times $项数,下面从第一个位置开始,对角线上写$1$(第一行忽略,其他写$0$)

$4\quad$把初始矩阵按下标从大到小写出来,一定要打竖

$5\quad$把题目要求的第$n$项的先减去矩阵的边长,然后进行快速幂,最后初始矩阵的第一个数就是答案

其实大家可以用横着写初始矩阵,竖着写系数的方法理解,但是为了减少常数,我们不可能两个矩阵开到一样大,所以我们适应计算机的理解,竖着写更方便,而且基本正确。

还可以用判断是否为$0$、改变转移顺序、人工$mod$的速度来卡常数。

对于一些不止一维的题目,可以把后面几维顺着写下去(像二维并查集一样),有常数项的可以写到矩阵里面去。

理论时间复杂度:$O(\log_{2}({p^{2}\times n})$其中$n$是要求的第n项答案,$p$是矩阵的大小。

矩阵乘法优化DP的更多相关文章

  1. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  2. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  3. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  4. 矩阵乘法优化DP复习

    前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...

  5. 51nod 1583 犯罪计划——矩阵乘法优化dp

    文泽想在埃及做案n次,并且想在最后不用得到惩罚.案件的被分成几种类型.比如说,案件A,当案件A被重复犯两次时,案件A将被认为不是犯罪案件,因此犯案人不用得到惩罚.也就是说,案件A被犯偶数次时,犯案人将 ...

  6. 【bzoj2476】战场的数目 矩阵乘法优化dp

    题目描述 (战场定义为对于最高的一列向两边都严格不增的“用积木搭成”的图形) 输入 输入文件最多包含25组测试数据,每个数据仅包含一行,有一个整数p(1<=p<=109),表示战场的图形周 ...

  7. 【矩阵乘法优化dp】[Codeforces 621E] Wet Shark and Blocks

    http://codeforces.com/problemset/problem/621/E E. Wet Shark and Blocks time limit per test 2 seconds ...

  8. luoguP2768: 珍珠项链(矩阵乘法优化DP)

    题意:有K种珍珠,每种N颗,求长度为1~N的项链,包含K种珍珠的项链种类数.N<=1e9, K<=30; 思路:矩阵快速幂,加个1累加前缀和即可. #include<bits/std ...

  9. bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]

    4870: [Shoi2017]组合数问题 题意:求 \[ \sum_{i=0}^{n-1} \binom{nk}{ik+r} \mod p \] \(n \le 10^9, 0\le r < ...

随机推荐

  1. MySQL——约束(constraint)详解

    该博客说说关于数据库中一个重要的知识点——约束 一.什么是约束约束英文:constraint 约束实际上就是表中数据的限制条件 二.约束作用表在设计的时候加入约束的目的就是为了保证表中的记录完整和有效 ...

  2. vue入门全局配置

    全局配置 Vue.config 是一个对象,包含 Vue 的全局配置.可以在启动应用之前修改下列属性: silent 类型:boolean 默认值:false 用法: Vue.config.silen ...

  3. 结巴分词python

    将文件中的txt文档依次读出 并分好词后 写入 另外的TXT中 #coding=utf-8 import os import jieba import codecs import random def ...

  4. Leetcode题库——48.旋转图像

    @author: ZZQ @software: PyCharm @file: rotate.py @time: 2018/11/16 15:41 要求:给定一个 n × n 的二维矩阵表示一个图像.将 ...

  5. 第二个Sprint

    能够实现三个数,两个操作符的四则运算.

  6. 读C#程序(第三周)

    阅读下面程序,请回答如下问题: 问题1:这个程序要找的是符合什么条件的数? 问题2:这样的数存在么?符合这一条件的最小的数是什么? 问题3:在电脑上运行这一程序,你估计多长时间才能输出第一个结果?时间 ...

  7. PAT 甲级 1090 Highest Price in Supply Chain

    https://pintia.cn/problem-sets/994805342720868352/problems/994805376476626944 A supply chain is a ne ...

  8. Activiti源码学习:ExecutionListener与TaskListener的区别

    /** Callback interface to be notified of execution events like starting a process instance, * ending ...

  9. 前端开发【第5篇:JavaScript进阶】

    语句 复合表达式和空语句 复合表达式意思是把多条表达式连接在一起形成一个表达式 { let a = 100; let b = 200; let c = a + b; } 注意这里不能再块级后面加分号, ...

  10. 浅谈Java中的深克隆和浅克隆(阿里面试)

    在最近的秋招中,阿里和多益网络都问到了这个问题,虽然很简单,但是我还是想总结一下,感兴趣的可以看一下我的个人博客网站(Spring+MyBatis+redis+nginx+mysql)(适合菜鸟),最 ...