2019.02.09 codeforces451 E. Devu and Flowers(容斥原理)
传送门
题意简述:给出n堆花,对于第j堆,有f[j]朵花,每堆花的颜色不同,现在要从中选出s朵,求方案数。
思路:
假设所有花没有上限直接插板法,现在有了上限我们用容斥扣掉多算的
状压一下再容斥:fif_ifi表示强制集合iii中的所有堆都超过上限,其余任意的方案数,这样容斥一下就完了。
代码:
#include<bits/stdc++.h>
#include<tr1/unordered_map>
#define ri register int
using namespace std;
const int N=25,mod=1e9+7;
typedef long long ll;
inline ll read(){
ll ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(const int&a,const int&b){return a>=b?a-b:a-b+mod;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
int n,ans=0,inv[N];
ll s,f[N];
inline int C(ll n,int m){
if(m<0||n<0||n<m)return 0;
n%=mod;
if(!n||!m)return 1;
int ret=1;
for(ri i=1;i<=m;++i)ret=mul(ret,n-i+1),ret=mul(ret,inv[i]);
return ret;
}
int main(){
n=read(),s=read(),inv[1]=1;
for(ri i=2;i<=20;++i)inv[i]=mul(inv[mod-mod/i*i],mod-mod/i);
for(ri i=1;i<=n;++i)f[i]=read();
for(ri tmp,i=0;i<(1<<n);++i){
if(!i)ans=C(n+s-1,n-1);
else{
ll sum=0,cnt=0;
for(ri j=0;j<n;++j)if((i>>j)&1)++cnt,sum+=f[j+1];
tmp=C(n+s-sum-cnt-1,n-1);
ans=cnt&1?dec(ans,tmp):add(ans,tmp);
}
}
cout<<ans;
return 0;
}
2019.02.09 codeforces451 E. Devu and Flowers(容斥原理)的更多相关文章
- 2019.02.09 codeforces gym 100548F. Color(容斥原理)
传送门 题意简述:对n个排成一排的物品涂色,有m种颜色可选. 要求相邻的物品颜色不相同,且总共恰好有K种颜色,问所有可行的方案数.(n,m≤1e9,k≤1e6n,m\le1e9,k\le1e6n,m≤ ...
- 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)
传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
- Codeforces 451E Devu and Flowers(容斥原理)
题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...
- 2019/02/09 对于KinectFusion 的理解
网上有很多关于Kinect Fusion 的详细介绍,包括各个部分的算法,思路,以及应用上的限制和优化. 在此就不多介绍了. KinectFusion 提供了非常基础的用RGB-D 相机实现的 Den ...
- 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)
传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi表示保证集合iii中所有点都连通其余点随意的方案数. gig ...
- 2019.02.09 bzoj2839: 集合计数(容斥原理)
传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk种方案 ...
- 2019.02.09 bzoj4455: [Zjoi2016]小星星(容斥原理+dp)
传送门 题意简述:给一张图和一棵树(点数都为n≤17n \le17n≤17),问有多少种给树的标号方法方法使得图中去掉多余的边之后和树一模一样. 思路: 容斥好题啊. 考虑fi,jf_{i,j}fi, ...
- 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)
传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...
随机推荐
- ADB 运行原理
ADB基本命令和简介 ADB就是Android Debug Bridge,Android调试桥的意思,很形象.需要在电脑上安装SDK Platform Tools 对应的版本才能使用 基于ADB的工具 ...
- 颜色 color
在res/values文件夹下的color.xml添加 <?xml version="1.0" encoding="utf-8"?> <res ...
- TCP粘包、拆包
TCP粘包.拆包 熟悉tcp编程的可能都知道,无论是服务端还是客户端,当我们读取或发送数据的时候,都需要考虑TCP底层的粘包/拆包机制. TCP是一个“流”协议,所谓流就是没有界限的遗传数据.可以想象 ...
- Java基本语法之动手动脑
1.枚举类型 运行EnumTest.java 运行结果:false,false,true,SMALL,MEDIUM,LARGE 结论:枚举类型是引用类型,枚举不属于原始数据类型,它的每个具体值都引用一 ...
- ScrollView定时器复用
起始偏移量设置为一个宽度 [NSTimer scheduledTimerWithTimeInterval:2 target:self selector:@selector(refreshPic) us ...
- python 常库介绍及安装方法
bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheetahcherrypy:一个WEB frameworkctypes:用来调用动态链接库DBUtils:数 ...
- 9.14 h5日记
9.14 ❤知识补充 margin的问题:margin:0 auto:可以解决元素在网页的居中问题(记得设置宽度) 1.css层叠样式表的问题 CSS的两个性质 (1)继承性 (2)层叠性 ...
- 向kafka批量发送已存在的txt文件
需要利用kafka发送txt或log文件,有两种方式:1.自己写程序:2.利用kafka自带脚本. 自己写程序: import org.apache.kafka.clients.producer.Ka ...
- Numpy array 合并
1.np.vstack() :垂直合并 >>> import numpy as np >>> A = np.array([1,1,1]) >>> ...
- jQuery的节点选择
jQuery.parent(expr) 找父亲节点,可以传入expr进行过滤,比如$("span").parent()或者$("span").parent(&q ...