传送门

题意简述:给出n堆花,对于第j堆,有f[j]朵花,每堆花的颜色不同,现在要从中选出s朵,求方案数。


思路:

假设所有花没有上限直接插板法,现在有了上限我们用容斥扣掉多算的

状压一下再容斥:fif_ifi​表示强制集合iii中的所有堆都超过上限,其余任意的方案数,这样容斥一下就完了。

代码:

#include<bits/stdc++.h>
#include<tr1/unordered_map>
#define ri register int
using namespace std;
const int N=25,mod=1e9+7;
typedef long long ll;
inline ll read(){
	ll ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(const int&a,const int&b){return a>=b?a-b:a-b+mod;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
int n,ans=0,inv[N];
ll s,f[N];
inline int C(ll n,int m){
	if(m<0||n<0||n<m)return 0;
	n%=mod;
	if(!n||!m)return 1;
	int ret=1;
	for(ri i=1;i<=m;++i)ret=mul(ret,n-i+1),ret=mul(ret,inv[i]);
	return ret;
}
int main(){
	n=read(),s=read(),inv[1]=1;
	for(ri i=2;i<=20;++i)inv[i]=mul(inv[mod-mod/i*i],mod-mod/i);
	for(ri i=1;i<=n;++i)f[i]=read();
	for(ri tmp,i=0;i<(1<<n);++i){
		if(!i)ans=C(n+s-1,n-1);
		else{
			ll sum=0,cnt=0;
			for(ri j=0;j<n;++j)if((i>>j)&1)++cnt,sum+=f[j+1];
			tmp=C(n+s-sum-cnt-1,n-1);
			ans=cnt&1?dec(ans,tmp):add(ans,tmp);
		}
	}
	cout<<ans;
	return 0;
}

2019.02.09 codeforces451 E. Devu and Flowers(容斥原理)的更多相关文章

  1. 2019.02.09 codeforces gym 100548F. Color(容斥原理)

    传送门 题意简述:对n个排成一排的物品涂色,有m种颜色可选. 要求相邻的物品颜色不相同,且总共恰好有K种颜色,问所有可行的方案数.(n,m≤1e9,k≤1e6n,m\le1e9,k\le1e6n,m≤ ...

  2. 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)

    传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k​ ...

  3. 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)

    传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai​,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...

  4. Codeforces 451E Devu and Flowers(容斥原理)

    题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...

  5. 2019/02/09 对于KinectFusion 的理解

    网上有很多关于Kinect Fusion 的详细介绍,包括各个部分的算法,思路,以及应用上的限制和优化. 在此就不多介绍了. KinectFusion 提供了非常基础的用RGB-D 相机实现的 Den ...

  6. 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)

    传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi​表示保证集合iii中所有点都连通其余点随意的方案数. gig ...

  7. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

  8. 2019.02.09 bzoj4455: [Zjoi2016]小星星(容斥原理+dp)

    传送门 题意简述:给一张图和一棵树(点数都为n≤17n \le17n≤17),问有多少种给树的标号方法方法使得图中去掉多余的边之后和树一模一样. 思路: 容斥好题啊. 考虑fi,jf_{i,j}fi, ...

  9. 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)

    传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...

随机推荐

  1. IE浏览器调试工具不能使用

    Mac 使用VMware Fusion虚拟机,安装Windows 7 Service Pack 1 (SP1). 移除自带的IE8,下载并安装IE11(64位). IE 11 调试工具不能使用,并且调 ...

  2. 截图原理(二)——android自动化测试学习历程

    接上一篇(截图原理) 视频地址:http://study.163.com/course/courseLearn.htm?courseId=712011#/learn/video?lessonId=87 ...

  3. cipher的各个模式

    block cipher 工作模式(引自百度)Electronic Codebook Mode 最经典的模式,把明文按64比特为单位分为block, 对所有block使用同样的密钥来加密,最后把输出的 ...

  4. 13-算法训练 P0505

    算法训练 P0505   时间限制:1.0s   内存限制:256.0MB      一个整数n的阶乘可以写成n!,它表示从1到n这n个整数的乘积.阶乘的增长速度非常快,例如,13!就已经比较大了,已 ...

  5. python3 安装使用 fabirc3 模块以及 fab 命令(转)

    原文地址:https://blog.csdn.net/cityzenoldwang/article/details/78454964 python3 fabric3 模块之 fab 命令 安装 pyt ...

  6. JFinal Web开发学习(九)后台添加前台显示博客

    效果: 发博客: 显示博客: 后台:使用hui-admin,文章编辑器是百度开源的ueditor 前台:使用layui前端框架 1.写控制器BlogController controller包中 pa ...

  7. C# 一段通用的写log 日志的好程序

    public void Write(string text) { FileStream fs = new FileStream(Application.StartupPath+"/log.t ...

  8. session是什么

    初识session,跟大家一起学习下 session是什么 首先,我们需要知道session是什么.我们普遍将session称之为会话控制.说实在的,我现在也不清楚session到底算是什么.我个人认 ...

  9. gdal source code c++ make windows

    下载源码 GDAL源代码下载地址:http://trac.osgeo.org/gdal/wiki/DownloadSource,或者安装svn从源代码服务器下载,svn地址是:http://svn.o ...

  10. 转录组分析---Hisat2+StringTie+Ballgown使用

    转录组分析---Hisat2+StringTie+Ballgown使用 (2016-10-10 08:14:45) 转载▼ 标签: 生物信息学 转录组   1.Hisat2建立基因组索引: First ...