SciTech-Mathmatics-Probability+Statistics: Distribution :

The Uniform Distribution

BY ZACH BOBBITTPOSTED ON MARCH 2, 2021

The uniform distribution is a probability distribution in which every value between an interval from a to b is equally likely to occur.

If a random variable \(\large X\) follows a uniform distribution,

then the probability that \(\large X\) takes on a value between \(\large x_1\) and \(\large x_2\) can be found by the following formula:

\(\large \begin{array}{ll} \\
&P(x_1 < X < x_2) = \frac{x_2\ –\ x_1}{b\ –\ a} \\
where:& \\
& x_1:\ the\ \bm{lower\ value}\ of\ \bm{interest} \\
& x_2:\ the\ \bm{upper\ value}\ of\ \bm{interest} \\
&\ \ a:\ the\ \bm{minimum\ possible\ value} \\
&\ \ b:\ the\ \bm{maxmum\ possible\ value} \\
\end{array}\)

For example, suppose the weight of dolphins is uniformly distributed between 100 pounds and 150 pounds.

If we randomly select a dolphin at random, we can use the formula above to determine the probability that the chosen dolphin will weigh between 120 and 130 pounds:

P(120 < X < 130) = (130 – 120) / (150 – 100)

P(120 < X < 130) = 10 / 50

P(120 < X < 130) = 0.2

The probability that the chosen dolphin will weigh between 120 and 130 pounds is 0.2.

Properties of the Uniform Distribution

The uniform distribution has the following properties:

\(\large \begin{array}{ll} \\
\bm{Mean}: ( \bm{ a } + \bm{ b }) / 2 \\
\bm{Median}: ( \bm{ a } + \bm{ b } ) / 2 \\
\bm{Standard\ Deviation}: \sqrt{ \frac{(b\ –\ a)^2}{12} } = \frac{(b\ –\ a)}{\sqrt{12}} \\
\bm{Variance}: \frac{(b\ –\ a)^2}{12} \\
\bm{\sqrt{12}}:\ 3.4641 \\
\end{array}\)

For example, suppose the weight of dolphins is uniformly distributed between 100 pounds and 150 pounds.

We could calculate the following properties for this distribution:

\(\large \begin{array}{ll} \\
Mean\ weight: (a\ +\ b) / 2 = (150\ +\ 100) / 2 = 125 \\
Median\ weight: (a + b) / 2 = (150\ +\ 100) / 2 = 125 \\
Standard\ Deviation\ of\ weight: \sqrt{ \frac{(150\ –\ 100)^2}{12} } = 14.43 \\
Variance\ of\ weight: \frac{(b\ –\ a)^2}{12} = 208.33 \\
\end{array}\)

Uniform Distribution Practice Problems

Use the following practice problems to test your knowledge of the uniform distribution.

Question 1: A bus shows up at a bus stop every 20 minutes. If you arrive at the bus stop, what is the probability that the bus will show up in 8 minutes or less?

Solution 1: The minimum amount of time you’d have to wait is 0 minutes and the maximum amount is 20 minutes. The lower value of interest is 0 minutes and the upper value of interest is 8 minutes.

Thus, we’d calculate the probability as:

P(0 < X < 8) = (8-0) / (20-0) = 8/20 = 0.4.

Question 2: The length of an NBA game is uniformly distributed between 120 and 170 minutes. What is the probability that a randomly selected NBA game lasts more than 155 minutes?

Solution 2: The minimum time is 120 minutes and the maximum time is 170 minutes. The lower value of interest is 155 minutes and the upper value of interest is 170 minutes.

Thus, we’d calculate the probability as:

P(155 < X < 170) = (170-155) / (170-120) = 15/50 = 0.3.

Question 3: The weight of a certain species of frog is uniformly distributed between 15 and 25 grams. If you randomly select a frog, what is the probability that the frog weighs between 17 and 19 grams?

Solution 3: The minimum weight is 15 grams and the maximum weight is 25 grams. The lower value of interest is 17 grams and the upper value of interest is 19 grams.

Thus, we’d calculate the probability as:

P(17 < X < 19) = (19-17) / (25-15) = 2/10 = 0.2.

Note: We can use the Uniform Distribution Calculator to check our answers for each of these problems.

SciTech-Mathmatics-Probability+Statistics: Distribution : The Uniform Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  2. Uniform Distribution均匀分布

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&am ...

  3. 均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)

    maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1, ...

  4. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  5. 联合概率(joint probability)、分布函数(distribution function)

    0. PMF 与 PDF 的记号 PMF:PX(x) PDF:fX(x) 1. 联合概率 联合概率:是指两个事件同时发生的概率. P(A,B)=P(B|A)⋅P(A)⇒P(B|A)=P(A,B)P(A ...

  6. Probability&Statistics 概率论与数理统计(1)

    基本概念 样本空间: 随机试验E的所有可能结果组成的集合, 为E的样本空间, 记为S 随机事件: E的样本空间S的子集为E的随机事件, 简称事件, 由一个样本点组成的单点集, 称为基本事件 对立事件/ ...

  7. Study note for Continuous Probability Distributions

    Basics of Probability Probability density function (pdf). Let X be a continuous random variable. The ...

  8. Parametric Statistics

    1.What are “Parametric Statistics”? 统计中的参数指的是总体的一个方面,而不是统计中的一个方面,后者指的是样本的一个方面.例如,总体均值是一个参数,而样本均值是一个统 ...

  9. QM5_Didstribution

    Basic Concepts Probability distribution Discrete distribution (离散分布) The distribution of the discret ...

  10. Self-Supervised Representation Learning

    Self-Supervised Representation Learning 2019-11-11 21:12:14  This blog is copied from: https://lilia ...

随机推荐

  1. 使用IDEA管理服务器Docker及远程仓库

    目录 配置连接Docker服务器及远程仓库 连接服务器Docker 远程仓库(可选) IDEA管理 确保docker服务器已经开启了远程守护进程访问.[1] 配置连接Docker服务器及远程仓库 连接 ...

  2. 代码随想录第十四天 | Leecode 103. 二叉树的层序遍历、226. 翻转二叉树、101. 对称二叉树、104. 二叉树的最大深度、111. 二叉树的最小深度

    写在前面 今天补一下昨天没有写的层序遍历,层序遍历有整整十道题,打算只在博客详细写一道,后续的题目就自己在Leecode上刷一刷得了,不准备全部写下来(计划是只在博客给出每一道题目的链接).除此之外还 ...

  3. 通过Java写入数据到Excel表格

    在数据处理与管理领域,Excel 凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具.在 Java 开发过程中,常常需要将不同类型的数据,如文本.数值.数组以及 DataTable 数据写入 ...

  4. windows11 安装WSL2详细过程

    一.什么是 WSL 2 时间来到 2017 年,事情正在起变化.微软正式发布了「适用于 Linux 的 Windows 子系统」,即人们熟知的 Windows Subsystem for Linux, ...

  5. quartz 读取xml文档执行任务

    xml 配置 <?xml version="1.0" encoding="UTF-8"?> <job-scheduling-data xmln ...

  6. Win32汇编学习笔记06.APIHook

    Win32汇编学习笔记06.APIHook-C/C++基础-断点社区-专业的老牌游戏安全技术交流社区 - BpSend.net api hook 称为 api 钩子,也称为 内联apihook 我们程 ...

  7. ChatterBot人工智能,聊天机器人,无坑指南(安装,使用)(2.使用篇)

    上一篇(安装):https://www.cnblogs.com/Ctrl-cCtrl-v/p/13220584.html 基础代码: 1 from chatterbot import ChatBot ...

  8. 2024牛客多校3J Rigged Games

    欢迎来我的博客看这篇题解! Problem 在两人竞技比赛中,对于任何正整数 \(a\) ,我们定义 \(BO(2 a-1)\) 如下:两名玩家继续竞争,直到其中一人获胜 \(a\) 次,那么他赢得整 ...

  9. 启智树提高组day4T1 T1(t1.cpp,1s,512MB)

    启智树提高组day4T1 T1(t1.cpp,1s,512MB) 题面描述 对⼀个⻓度为2n 的实数序列A考虑下列问题: 设S为序列中所有元素的和.你可以做下列操作n次: 选择两个未被选中过的下标i和 ...

  10. Java IO<2> 输入/输出流 FileInputStream/FileOutputStream

    输入/输出流 按操作 数据单位不同分为:流 字节流(8 bit) ,字符流(16 bit) 按数据流的 流向不同分为: 输入流,输出流 按流的 角色的不同分为:节点流,处理流 ![image-2 ...