luoguP2495 [SDOI2011]消耗战
https://www.luogu.org/problemnew/show/P2495
Dp 方程很显然
设 Dp[u] 表示——使 u 不与其子树中任意一个关键点联通的最小代价
设 w[a, b] 表示 a 与 b 之间的边的权值。
- 若 son[i] 不是关键点,Dp[u] = Dp[u] + min{Dp[son[i]],w[u][son[i]]}
- 若 son[i] 是关键点,Dp[u] = Dp[u] + w[u][son[i]]
但这样复杂度很显然是不对的,所以我们考虑虚树
什么,你还不会虚树?那就去跟 zzq 学吧 https://www.cnblogs.com/zzqsblog/p/5560645.html
我们发现 k 的总和与 n 同级,所以用虚树优化这个 Dp,建出虚树,在虚树上 Dp 即可
#include <bits/stdc++.h>
#define X first
#define Y second
#define mp make_pair
using namespace std;
typedef long long ll;
const int N = 250000 + 5, LG2 = 18;
vector < pair <int, int> > G[N], G2[N];
int pre[N][LG2 + 1], dep[N], mx[N][LG2 + 1], id[N], dfn;
int n, m, k, h[N], sta[N], len, MX;
ll f[N];
bool book[N];
void init(int u, int fa) {
pre[u][0] = fa; dep[u] = dep[fa] + 1; id[u] = ++dfn;
for(int i = 1; i <= LG2; i++) {
pre[u][i] = pre[pre[u][i - 1]][i - 1];
mx[u][i] = min(mx[u][i - 1], mx[pre[u][i - 1]][i - 1]);
}
for(vector < pair <int, int> > :: iterator it = G[u].begin(); it != G[u].end(); it++) {
int v = it -> X; if(v != fa) mx[v][0] = it -> Y, init(v, u);
}
}
int LCA(int x, int y) {
MX = INT_MAX;
if(dep[x] > dep[y]) swap(x, y);
for(int i = LG2; i >= 0; i--)
if(dep[pre[y][i]] >= dep[x])
MX = min(MX, mx[y][i]), y = pre[y][i];
if(x == y) return x;
for(int i = LG2; i >= 0; i--)
if(pre[x][i] != pre[y][i]) {
MX = min(MX, min(mx[x][i], mx[y][i]));
x = pre[x][i], y = pre[y][i];
}
return pre[x][0];
}
bool cmp(int x, int y) {return id[x] < id[y];}
void DP(int u) {
f[u] = 0;
for(vector < pair <int, int> > :: iterator it = G2[u].begin(); it != G2[u].end(); it++) {
int v = it -> X; DP(v);
if(book[v]) f[u] += it -> Y;
else f[u] += min(f[v], (ll)it -> Y);
}
}
int main() {
cin >> n;
for(int i = 1; i < n; i++) {
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
G[a].push_back( mp(b, c) );
G[b].push_back( mp(a, c) );
}
init(1, 0); cin >> m;
while(m--) {
scanf("%d", &k);
for(int i = 1; i <= k; i++) {
scanf("%d", &h[i]);
book[h[i]] = 1;
}
sort(h + 1, h + k + 1, cmp);
sta[len = 1] = 1; G2[1].clear();
for(int i = 1; i <= k; i++) {
if(h[i] == 1) continue;
int lca = LCA(h[i], sta[len]);
if(lca != sta[len]) {
while(id[lca] < id[sta[len - 1]]) {
LCA(sta[len - 1], sta[len]);
G2[sta[len - 1]].push_back( mp(sta[len], MX) );
len--;
}
if(id[lca] > id[sta[len - 1]]) {
G2[lca].clear();
LCA(lca, sta[len]);
G2[lca].push_back( mp(sta[len], MX) );
sta[len] = lca;
} else LCA(lca, sta[len]), G2[lca].push_back( mp(sta[len], MX) ), len--;
}
G2[h[i]].clear(); sta[++len] = h[i];
}
for(int i = 1; i < len; i++) LCA(sta[i], sta[i + 1]), G2[sta[i]].push_back( mp(sta[i + 1], MX) );
DP(1); printf("%lld\n", f[1]);
for(int i = 1; i <= k; i++) book[h[i]] = 0;
}
return 0;
}
luoguP2495 [SDOI2011]消耗战的更多相关文章
- [luoguP2495] [SDOI2011]消耗战(DP + 虚树)
传送门 明显虚树. 别的题解里都是这样说的. 先不考虑虚树,假设只有一组询问,该如何dp? f[u]表示把子树u中所有的有资源的节点都切掉的最优解 如果节点u需要切掉了话,$f[u]=val[u]$ ...
- BZOJ 2286: [Sdoi2011]消耗战
2286: [Sdoi2011消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2082 Solved: 736[Submit][Status] ...
- bzoj 2286: [Sdoi2011]消耗战 虚树+树dp
2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 在一 ...
- bzoj千题计划254:bzoj2286: [Sdoi2011]消耗战
http://www.lydsy.com/JudgeOnline/problem.php?id=2286 虚树上树形DP #include<cmath> #include<cstdi ...
- 【LG2495】[SDOI2011]消耗战
[LG2495][SDOI2011]消耗战 题面 洛谷 题解 参考博客 题意 给你\(n\)个点的一棵树 \(m\)个询问,每个询问给出\(k\)个点 求将这\(k\)个点与\(1\)号点断掉的最小代 ...
- AC日记——[SDOI2011]消耗战 洛谷 P2495
[SDOI2011]消耗战 思路: 建虚树走树形dp: 代码: #include <bits/stdc++.h> using namespace std; #define INF 1e17 ...
- [BZOJ2286][SDOI2011]消耗战(虚树DP)
2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4998 Solved: 1867[Submit][Statu ...
- BZOJ2286 [Sdoi2011]消耗战 【虚树 + 树形Dp】
2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 4261 Solved: 1552 [Submit][Sta ...
- 【BZOJ2286】[Sdoi2011]消耗战 虚树
[BZOJ2286][Sdoi2011]消耗战 Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的 ...
随机推荐
- 匿名类型与Select方法实现自定义对象插入局部表结构中
在提取局部表结构数据时,通过Select选取需要的字段,如下句,此时其实产生了一个不用于_menuMan的原新数据类型new { c.SYS_COMMANDS_ID,c.TXT_COMMANDTITL ...
- Java如何解决form表单上传文件,以及页面返回处理结果通知!
前端JSP代码 <form id='formSumbit' class='form-horizontal' action='/ncpay/route/chlsubmcht/batchImpor' ...
- C#使用 SharpAVI进行 屏幕录制
再 nuget 中 搜索 shapAvi 并添加引用 github 地址:https://github.com/baSSiLL/SharpAvi using SharpAvi; using Sharp ...
- Educational Codeforces Round 45 (Rated for Div. 2)
A bracket sequence is a string containing only characters "(" and ")". A regular ...
- Timer的缺陷
- form表单中的button按钮
如果在form表单中 , 存在button元素,button元素就充当了submit的角色
- android解析xml文件的方式
android解析xml文件的方式 作者:东子哥 ,发布于2012-11-26,来源:博客园 在androd手机中处理xml数据时很常见的事情,通常在不同平台传输数据的时候,我们就可能使用xm ...
- 分布式缓存产品Redis和memcached比较区别(图)
- nginx配置跨域访问
前端要在本地测试ajax接口,无法跨域访问,所以在测试环境的nginx配置了跨域支持,方法如下: 在nginx.conf文件, http块下配置 42 #support cross domain ac ...
- 基于Nginx实现集群原理
1)安装Nginx 2)配置多个Tomcat,并修改端口号(两个端口号不一样即可) 3)在Nginx的Nginx.conf添加如下配置: