Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −10 4 <= xi, yi <= 10 4 for all i = 1 . . . n.

Output

For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

Sample Input

3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1

Sample Output

0.50
27.00

题意:在二维平面上面找三个点构成三角形,使得其面积最大。

思路1:枚举三角形的一条边,然后通过旋转卡壳找最远的点; 自己想的,而且AC了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
#define RC rotating_calipers
using namespace std;
const int maxn=;
struct point{
double x,y;
point(double x=,double y=):x(x),y(y){}
bool operator < (const point &c) const { return x<c.x||(x==c.x&&y<c.y);}
point operator - (const point &c) const { return point(x-c.x,y-c.y);}
double operator * (const point &c) const { return x*c.y-y*c.x; }
double operator | (const point &c) const { return (x-c.x)*(x-c.x)+(y-c.y)*(y-c.y); }
};
double det(point A,point B){ return A.x*B.y-A.y*B.x;}
double det(point O,point A,point B){ return det(A-O,B-O);}
point a[maxn],ch[maxn];
void convexhull(int n,int &top)
{
sort(a+,a+n+); top=;
for(int i=;i<=n;i++){
while(top>&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
int ttop=top;
for(int i=n-;i>=;i--){
while(top>ttop&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
}
double rotating_calipers(point p[],int top)
{
top--;
double ans=; int now;
rep(i,,top-){
int now=i+;
rep(j,i+,top-){
while(now<=top&&fabs(det(p[i],p[j],p[now]))<fabs(det(p[i],p[j],p[now+]))){
now++;
}
ans=max(ans,fabs(det(p[i],p[j],p[now])));
}
}
return ans;
}
int main()
{
int N;
while(~scanf("%d",&N)&&N!=-){
for(int i=;i<=N;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
int top; convexhull(N,top);
double ans=RC(ch,top);
printf("%.2f\n",0.5*ans);
}
return ;
}

思路2:枚举三角形的一个点,然后通过旋转卡壳找最远的边。别人的代码,AC了,但是拿去做CF的时候WA36了。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
#define RC rotating_calipers
using namespace std;
const int maxn=;
struct point{
double x,y;
point(double x=,double y=):x(x),y(y){}
bool operator < (const point &c) const { return x<c.x||(x==c.x&&y<c.y);}
point operator - (const point &c) const { return point(x-c.x,y-c.y);}
};
double det(point A,point B){ return A.x*B.y-A.y*B.x;}
double det(point O,point A,point B){ return det(A-O,B-O);}
point a[maxn],ch[maxn];
void convexhull(int n,int &top)
{
sort(a+,a+n+); top=;
for(int i=;i<=n;i++){
while(top>&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
int ttop=top;
for(int i=n-;i>=;i--){
while(top>ttop&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
}
double rotating_calipers(point p[],int top)
{
double ans=; int now1=,now2=;
rep(i,,top){
while(fabs(det(p[i],p[now1],p[now2]))<fabs(det(p[i],p[now1],p[now2+]))){
now2++;if(now2==top+1) now2=;
}//利用其是单峰函数
while(fabs(det(p[i],p[now1],p[now2]))<fabs(det(p[i],p[now1+],p[now2]))){
now1++;if(now1==top+1) now1=;
}
ans=max(ans,fabs(det(p[i],p[now1],p[now2])));
}
return ans;
}
int main()
{
int N;
while(~scanf("%d",&N)&&N!=-){
for(int i=;i<=N;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
int top; convexhull(N,top);
double ans=RC(ch,top-);
printf("%.2f\n",0.5*ans);
}
return ;
}

POJ - 2079:Triangle (旋转卡壳,求最大三角形)的更多相关文章

  1. POJ 2079 Triangle 旋转卡壳求最大三角形

    求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...

  2. POJ 2079 Triangle [旋转卡壳]

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 9525   Accepted: 2845 Descript ...

  3. hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)

    链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

  4. CodeForces - 682E: Alyona and Triangles(旋转卡壳求最大三角形)

    You are given n points with integer coordinates on the plane. Points are given in a way such that th ...

  5. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  6. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  7. [hdu5251]矩形面积 旋转卡壳求最小矩形覆盖

    旋转卡壳求最小矩形覆盖的模板题. 因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可. #include<cstdio> # ...

  8. POJ2187 旋转卡壳 求最长直径

    给定平面上的一些散点集,求最远两点距离的平方值. 题解: 旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离 #pragma GCC optimize(2) #pragma G++ optimi ...

  9. POJ 2079 Triangle(凸包+旋转卡壳,求最大三角形面积)

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 7625   Accepted: 2234 Descript ...

  10. poj 2079 Triangle,旋转卡壳求点集的最大三角形

    给出一个点集,求顶点在点集中的最大的三角形面积. 我们知道这三角形的三个点肯定在凸包上,我们求出凸包之后不能枚举,由于题目n比較大,枚举的话要O(n^3)的数量级,所以採用旋转卡壳的做法: 首先枚举三 ...

随机推荐

  1. typeset的常见用法

    typeset用于设置变量属性,如大小写,宽度,左右对齐等都可以用typeset来控制, 当用typeset改变一个变量的属性时,这种改变是永久的,下面以ksh为例,演示typeset的几种典型用法 ...

  2. jQuery可放大预览的图片滑块

    在线演示 本地下载

  3. tophat的用法

    概述:tophat是以bowtie2为核心的一款比对软件. tophat工作分两步: 1.将reads用bowtie比对到参考基因组上. 2.将unmapped-reads打断成更小的fragment ...

  4. PHP常用函数的归纳

    //===============================时间日期=============================== //y返回年最后两位,Y年四位数,m月份数字,M月份英文.d月 ...

  5. Go 书单

    一.<Go语言学习笔记> (未找到对应版本的电子书,大家可以去作者github:https://github.com/qyuhen/book) 推荐理由:作为时下流行的一种系统编程语言,G ...

  6. 用nc做网络压力测试

    测试结果:         1.数据的收发正常,没有出现丢包:         2.平均数据接发速率为:112MB/S,基本用完的千兆带宽.   测试方法:         1.通过FTP拷贝3.6G ...

  7. thinkphp 多表事务处理

    try{ $this->user = D('User'); $this->user->startTrans(); //开始事务 $res = $this->user->S ...

  8. html页面转JSP之后样式变化的问题

    html 保存为jsp   样式变化了  ,比如里面的一些input 获知是其他的一些样式变化的. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1 ...

  9. CentOS 7 安装 maven

    下载地址 http://maven.apache.org/download.cgi 版本 apache-maven-3.3.9 -bin.tar.gz tar -xvf apache-maven-3. ...

  10. HBase-scan简介及优化(缓存与批量处理)

    扫描(scan) 这种技术类似于数据库系统中的游标(cursor),并利用到了HBase提供的底层顺序存储的数据结构. 扫描操作的使用跟get方法非常类似.由于扫描操作的工作方式类似于迭代器,所以用户 ...