最近读skynet c语言部分的源码,发现有好多锁的使用和gcc提供的一些原子操作。看到这些东西,对于我这个newbee来说实在有些hold不住。但为了了解并进一步掌握,还是决定好好分析一下。不足之处望指正。

  自旋锁(spinlock) 和 互斥锁(mutex) 对比

  自旋锁:得到锁之前是在一个循环中空转,直到得到锁为止,那么就有三种可能 1:很短时间就得到锁,由于是空转,没有sleep,也就没有由系统到用户态的消耗,2:很长时间才得到锁,虽然没有状态的切换,但是由于忙等时间过长

      导致性能下降,3:一直空转,消耗cpu时间。

  互斥锁 : 企图获得锁,若是得不到锁则阻塞,放弃cpu,没有忙等的出现,当锁可得时,发生状态切换,由内核切换到用户态,虽然没有忙等但是状态切换的代价仍然很大。

  

  由此可知:对自旋锁和互斥锁的选择是要根据得到锁的耗时来的,若果当得到锁后,需要执行大量的操作,一般选用互斥锁,若得到锁后,进行很少量的操作,一般选择自旋锁,因为执行的操作短,那么忙等的开销总体还是小于内核态

         和用户态切换带来的开销的。

  最近在使用skynet,这里贴出来cloud实现自旋锁的代码,方便大家查阅:

    #ifndef SKYNET_SPINLOCK_H
    #define SKYNET_SPINLOCK_H

    #define SPIN_INIT(q) spinlock_init(&(q)->lock);
    #define SPIN_LOCK(q) spinlock_lock(&(q)->lock);
    #define SPIN_UNLOCK(q) spinlock_unlock(&(q)->lock);
    #define SPIN_DESTROY(q) spinlock_destroy(&(q)->lock);

    #ifndef USE_PTHREAD_LOCK

    struct spinlock {
        int lock;
    };

    static inline void
    spinlock_init(struct spinlock *lock) {
        lock->lock = 0;
    }

    static inline void
    spinlock_lock(struct spinlock *lock) {
        while (__sync_lock_test_and_set(&lock->lock,1)) {}
    }

    static inline int
    spinlock_trylock(struct spinlock *lock) {
        return __sync_lock_test_and_set(&lock->lock,1) == 0;
    }

    static inline void
    spinlock_unlock(struct spinlock *lock) {
        __sync_lock_release(&lock->lock);
    }

    static inline void
    spinlock_destroy(struct spinlock *lock) {
        (void) lock;
    }

    #else

    #include <pthread.h>

    // we use mutex instead of spinlock for some reason
    // you can also replace to pthread_spinlock

    struct spinlock {
        pthread_mutex_t lock;
    };

    static inline void
    spinlock_init(struct spinlock *lock) {
        pthread_mutex_init(&lock->lock, NULL);
    }

    static inline void
    spinlock_lock(struct spinlock *lock) {
        pthread_mutex_lock(&lock->lock);
    }

    static inline int
    spinlock_trylock(struct spinlock *lock) {
        return pthread_mutex_trylock(&lock->lock) == 0;
    }

    static inline void
    spinlock_unlock(struct spinlock *lock) {
        pthread_mutex_unlock(&lock->lock);
    }

    static inline void
    spinlock_destroy(struct spinlock *lock) {
        pthread_mutex_destroy(&lock->lock);
    }

  
    #endif
    #endif

  linux自带了pthread_spinlock。

  cloud的第一种实现中,用到了gcc自带的原子操作函数实现了spinlock,这里提供一些gcc自带的原子操作的资料:https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/_005f_005fatomic-Builtins.html#_005f_005fatomic-Builtins

  

  互斥锁和条件锁

  pthread_mutex_t 和 pthread_cond_t

  在阅读skynet.start.c中发现了这两种锁的使用,代码过长,不全部列出,这里只列出简化过得。

  源码在这里:https://github.com/cloudwu/skynet/blob/master/skynet-src/skynet_start.c

  简化后代码:

  //创建线程时调用的代码

  static void
  create_thread(pthread_t *thread, void *(*start_routine) (void *), void *arg) {
      if (pthread_create(thread,NULL, start_routine, arg)) {
          fprintf(stderr, "Create thread failed");
          exit(1);
      }
  }
  //事件发生时调用
  static void  
  wakeup(struct monitor *m, int busy) {
      if (m->sleep >= m->count - busy) {
          // signal sleep worker, "spurious wakeup" is harmless
          pthread_cond_signal(&m->cond);
      }
  }
  //创建socket线程监听链接,并唤醒阻塞的thread_worker线程
  static void *
  thread_socket(void *p) {
      struct monitor * m = p;
      skynet_initthread(THREAD_SOCKET);
      for (;;) {
          int r = skynet_socket_poll();
          if (r==0)
              break;
          if (r<0) {
              CHECK_ABORT
              continue;
          }
          wakeup(m,0);
      }
      return NULL;
  }

  static void *
  thread_worker(void *p) {
      struct worker_parm *wp = p;
      int id = wp->id;
      int weight = wp->weight;
      struct monitor *m = wp->m;
      struct skynet_monitor *sm = m->m[id];
      skynet_initthread(THREAD_WORKER);
      struct message_queue * q = NULL;         //上边几句选择性忽略
      while (!m->quit) {
          q = skynet_context_message_dispatch(sm, q, weight);
          if (q == NULL) {
              if (pthread_mutex_lock(&m->mutex) == 0) {  //创建工作线程时,每个线程运行到这里,获得mutex
                  ++ m->sleep;            //当没有事件要处理时,阻塞贤臣数加1
                  // "spurious wakeup" is harmless,
                  // because skynet_context_message_dispatch() can be call at any time.
                  if (!m->quit)
                      pthread_cond_wait(&m->cond, &m->mutex);   //在这里真正的阻塞在cond上,调用这个函数时,线程阻塞在cond上,并暂时放弃mutex的使用权,让其他线程可  以获取到,当其他线程获得到mutex,继续阻塞在cond上,直到socket线程监听到链接,调用pthread_cond_signal来唤醒工作线程,唤醒的工作线程,重新获得mutex.
                  -- m->sleep;
                  if (pthread_mutex_unlock(&m->mutex)) {
                      fprintf(stderr, "unlock mutex error");
                      exit(1);
                    }
                }
            }
        }
        return NULL;
    }
      

   创建thread_worker线程的代码: create_thread(&pid[i+3], thread_worker, &wp[i]);

   以上代码大致工作过程:

   1.create_thread(&pid[i+3], thread_worker, &wp[i]); 创建工作线程

     2.运行到thread_worker函数中pthread_cond_wait(&m->cond, &m->mutex)时,线程阻塞在cond上,待等待的条件出现,方可被唤醒.

   3.所有创建的工作线程,都阻塞在了cond上,等待条件出现,而条件出现是在用户连接服务端后,被epoll或kqueue监听到后,唤醒工作线程

    int r = skynet_socket_poll();
          if (r==0)
              break;
          if (r<0) {
              CHECK_ABORT
              continue;
          }
          wakeup(m,0); //唤醒工作线程

  

  一般来说 mutex和cond是配合使用的,稍后解释原因。

  未完,待续,欢迎纠正错误。

skynet中的各种锁的更多相关文章

  1. Java中的显示锁 ReentrantLock 和 ReentrantReadWriteLock

    在Java1.5中引入了两种显示锁,分别是可重入锁ReentrantLock和可重入读写锁ReentrantReadWriteLock.它们分别实现接口Lock和ReadWriteLock.(注意:s ...

  2. 在 Java 中高效使用锁的技巧--转载

    竞争锁是造成多线程应用程序性能瓶颈的主要原因 区分竞争锁和非竞争锁对性能的影响非常重要.如果一个锁自始至终只被一个线程使用,那么 JVM 有能力优化它带来的绝大部分损耗.如果一个锁被多个线程使用过,但 ...

  3. 分门别类总结Java中的各种锁,让你彻底记住

    概念 公平锁/非公平锁 公平锁是指多个线程按照申请锁的顺序来获取锁. 非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁.有可能,会造成优先级反转或者饥 ...

  4. SQLSERVER中的元数据锁

    SQLSERVER中的元数据锁 网上对于元数据锁的资料真的非常少 元数据锁一般会出现在DDL语句里 下面列出数据库引擎可以锁定的资源 资源 说明 RID 用于锁定堆(heap)中的某一行 KEY 用于 ...

  5. 编写高质量代码改善C#程序的157个建议——建议89:在并行方法体中谨慎使用锁

    建议89:在并行方法体中谨慎使用锁 除了建议88所提到的场合,要谨慎使用并行的情况还包括:某些本身就需要同步运行的场合,或者需要较长时间锁定共享资源的场合. 在对整型数据进行同步操作时,可以使用静态类 ...

  6. Java 中15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁,乐观锁,分段锁,自旋锁等等

    Java 中15种锁的介绍 Java 中15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁,乐观锁,分段锁,自旋锁等等,在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类 ...

  7. skynet中动态库的处理

    skynet中的.so动态库由service-src中的c文件编译完后生成,其中最重要的是snlua.c. 源码地址:https://github.com/cloudwu/skynet/service ...

  8. Java中的各种锁--分类总结

    前言 本文需要具备一定的多线程基础才能更好的理解. 学习java多线程时,最头疼的知识点之一就是java中的锁了,什么互斥锁.排它锁.自旋锁.死锁.活锁等等,细分的话可以罗列出20种左右的锁,光是看着 ...

  9. mysql中的乐观锁和悲观锁

    mysql中的乐观锁和悲观锁的简介以及如何简单运用. 关于mysql中的乐观锁和悲观锁面试的时候被问到的概率还是比较大的. mysql的悲观锁: 其实理解起来非常简单,当数据被外界修改持保守态度,包括 ...

随机推荐

  1. 关于new HashMap<>(1)中1的理解(hashMap的加载因子)

    新入公司,阅读代码的时候发现了一行代码,为 Map<String, String> map=new HashMap<>(1); 对于这个括号里面的1不能理解,于是查了资料,大概 ...

  2. 关于jquery的取消阻止默认事件

    最近帮朋友做个东西,整个屏幕有一个遮罩层,但是这个遮罩层能滑动,于是百度了一下,返现,用 $('body').bind("touchmove",function(e){ e.pre ...

  3. git commit -a -m "DM 1、获取aliOssSTS值,计算签名,实现视频PUT/POST2种上传方式上传;"

    git commit -a -m "DM 1.获取aliOssSTS值,计算签名,实现视频PUT/POST2种上传方式上传:" 微信小程序的视频上传

  4. jQuery方法find()与children()区别

    一.find() 1.1 说明 find()方法返回被选元素的后代元素,一路向下直到最后一个后代. 1.2 示例 <div> <p> <span>1</spa ...

  5. PL/SQL 入门

    1. 概述 PL/SQL(Procedure Language/SQL)是 Oracle 对 sql 语言的过程化扩展,指在 SQL 命令语言中增加了 过程处理语句(如分支,循环等),使 SQL 语言 ...

  6. Python2 和 Python3 区别汇总

    [Python2 和 Python3 的区别汇总,不定期补充] print 在进行程序调试时用得最多的语句可能就是 print,在 Python 2 中,print 是一条语句,而 Python3 中 ...

  7. 《Python 数据分析》笔记——pandas

    Pandas pandas是一个流行的开源Python项目,其名称取panel data(面板数据)与Python data analysis(Python 数据分析)之意. pandas有两个重要的 ...

  8. Facebook支持python的开源预测工具Prophet

    Facebook 宣布开源一款基于 Python 和 R 语言的数据预测工具――“Prophet”,即“先知”.取名倒是非常直白. Facebook 表示,Prophet 相比现有预测工具更加人性化, ...

  9. 3.7 基于51单片机+MC20的路径显示【使用STC15W内核】

    需要准备的硬件 MC20开发板 1个 https://item.taobao.com/item.htm?id=562661881042 GSM/GPRS天线 1根 https://item.taoba ...

  10. PDO:数据访问抽象层

    <?php //PDO:数据访问抽象层 //带有事务功能: //dsn:数据源 $dsn="mysql:host=localhost;dbname=aaas"; //造pdo ...