BZOJ2818 GCD 【莫比乌斯反演】
2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 6826 Solved: 3013
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
4
Sample Output
4
HINT
hint
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
题解
一般gcd一堆求和都是莫比乌斯
我们设f(n)表示gcd等于n的对数
我们设F(n)表示n|gcd的对数
则有
F(n)=⌊Nn⌋2
f(n)=∑n|dμ(dn)F(d)
=∑n|dμ(dn)⌊Nn⌋2
=∑Ni=1μ(i)⌊Ni∗n⌋2
ans=∑Np∈prime∑Ni=1μ(i)⌊Ni∗p⌋2
=∑NT=1⌊NT⌋2∗∑Np|Tμ(Tp)
至此我们可以枚举T,之后计算后边的和式就好了
其实后边的和式可以预处理得到,我直接算也能过
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 10000005,maxm = 100005,INF = 1000000000;
bitset<maxn> isn;
int prime[maxn],primei,miu[maxn],N;
void init(){
miu[1] = 1;
for (int i = 2; i <= N; i++){
if (!isn[i]) prime[++primei] = i,miu[i] = -1;
for (int j = 1; j <= primei && i * prime[j] <= N; j++){
isn[i * prime[j]] = true;
if (i % prime[j] == 0) {miu[i * prime[j]] = 0;break;}
miu[i * prime[j]] = -miu[i];
}
}
}
int main(){
cin>>N;
init();
LL ans = 0;
for (int i = 1; i <= primei; i++){
for (int j = 1; j <= N / prime[i]; j++)
ans += (LL) miu[j] * (N / prime[i] / j) * (N / prime[i] / j);
}
cout<<ans<<endl;
return 0;
}
BZOJ2818 GCD 【莫比乌斯反演】的更多相关文章
- BZOJ2818: Gcd 莫比乌斯反演
分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- 【BZOJ2818】Gcd [莫比乌斯反演]
Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- APSchedule的练习使用
1 简介 APScheduler的全称是Advanced Python Scheduler.它是一个轻量级的 Python 定时任务调度框架.APScheduler 支持三种调度任务:固定时间间隔,固 ...
- 从多Sheet的Excel文件中抽取数据
在数据驱动管理中增加Excle的JDBCODBC驱动 类名:sun.jdbc.odbc.JdbcOdbcDriver URL模板:jdbc:odbc:driver={Microsoft Excel D ...
- Linux 系统无法登录?你的程序有问题吧!
今天遇到一个问题,有个用户连接不上服务器(无法ssh远程连接) su: failed to execute /bin/bash: Resource temporarily unavailable 谷歌 ...
- Python基本数据类型(二)
数字类型: 数字的定义: 1.数字不可变,不可迭代 在python3里面所有的整形都是 int 在python2里面数字叫整型,整数类型,有int 有long 数字的方法: 数字的方法: 1.--- ...
- 数列分块入门 1 LOJ6277
题目描述 给出一个长为 n 的数列,以及 n 个操作,操作涉及区间加法,单点查值. 输入格式 第一行输入一个数字 n. 第二行输入 n 个数字,第 iii 个数字为 ai,以空格隔开. 接下来输 ...
- Java——static关键字---18.09.27
static表示“全局”或者“静态”的意思,用来修饰成员变量和成员方法,也可以形成静态static代码块,但在Java语言中没有全局变量的概念. static关键字主要有两种作用: 一.为某特定数据类 ...
- c#一些常用的方法集合
是从一个asp.net mvc的项目里看到的.挺实用的. 通过身份证号码获取出生日期和性别 通过身份证号码获取出生日期和性别 #region 由身份证获得出生日期 public static stri ...
- Borland和Micorsoft的对话(转载自月光软件网)
Borland与Microsoft关于Delphi的对话 Bear 1.Delphi较贵 一套Delphi的价格大约相当于两套Visual Studio ------------------- ...
- jmeter3.0生成html格式的dashboard性能测试结果
jmeter3.0以上支持生成dashboard的html报告,官网介绍:https://jmeter.apache.org/usermanual/generating-dashboard.html ...
- TortoiseGit小乌龟 git管理工具
1.新建分支git远端新建分支: b001本地git目录:右击--TortoiseGit--获取(会获取到新建分支) 2.本地新建分支对应远端分支本地新建分支:b001 关联远端分支b001(之后工作 ...