BZOJ2818 GCD 【莫比乌斯反演】
2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 6826 Solved: 3013
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
4
Sample Output
4
HINT
hint
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
题解
一般gcd一堆求和都是莫比乌斯
我们设f(n)表示gcd等于n的对数
我们设F(n)表示n|gcd的对数
则有
F(n)=⌊Nn⌋2
f(n)=∑n|dμ(dn)F(d)
=∑n|dμ(dn)⌊Nn⌋2
=∑Ni=1μ(i)⌊Ni∗n⌋2
ans=∑Np∈prime∑Ni=1μ(i)⌊Ni∗p⌋2
=∑NT=1⌊NT⌋2∗∑Np|Tμ(Tp)
至此我们可以枚举T,之后计算后边的和式就好了
其实后边的和式可以预处理得到,我直接算也能过
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 10000005,maxm = 100005,INF = 1000000000;
bitset<maxn> isn;
int prime[maxn],primei,miu[maxn],N;
void init(){
miu[1] = 1;
for (int i = 2; i <= N; i++){
if (!isn[i]) prime[++primei] = i,miu[i] = -1;
for (int j = 1; j <= primei && i * prime[j] <= N; j++){
isn[i * prime[j]] = true;
if (i % prime[j] == 0) {miu[i * prime[j]] = 0;break;}
miu[i * prime[j]] = -miu[i];
}
}
}
int main(){
cin>>N;
init();
LL ans = 0;
for (int i = 1; i <= primei; i++){
for (int j = 1; j <= N / prime[i]; j++)
ans += (LL) miu[j] * (N / prime[i] / j) * (N / prime[i] / j);
}
cout<<ans<<endl;
return 0;
}
BZOJ2818 GCD 【莫比乌斯反演】的更多相关文章
- BZOJ2818: Gcd 莫比乌斯反演
分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- 【BZOJ2818】Gcd [莫比乌斯反演]
Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- Lavavel5.5源代码 - 限流工具
app('redis')->connection('default')->throttle('key000') // 每60秒,只能有10个资源被获取,在3秒内获取不到锁抛出异常 -> ...
- 工作中使用的linux命令汇总
ln -s /usr/local/tomcat/ ./tomcat 创建软连接到/usr/local/tomcat tar -zxvf apache-kylin-2.4.0-bin-hbase1 ...
- 基于jQuery的2048小游戏设计(网页版)
上周模仿一个2048小游戏,总结一下自己在编写代码的时候遇到的一些坑. 游戏规则:省略,我想大部分人都玩过,不写了 源码地址:https://github.com/xinhua6/2048game.g ...
- ORA-12705: Cannot access NLS data files or invalid
RedHat7.1 Oracle11gr2 oracle 默认的编码方式如下:SQL> select userenv('language') from dual; USERENV('LANGUA ...
- 3155: Preprefix sum
3155: Preprefix sum https://www.lydsy.com/JudgeOnline/problem.php?id=3155 分析: 区间修改,区间查询,线段树就好了. 然后,这 ...
- EF报错“EntityValidationErrors”
在使用EF更新实体的时候报错,显示界面如下: 点击查看详情: 在查看详细的窗体中,EntityValidationErrors里面的也看不到具体的错误原因.在网上 ...
- 【APUE】Chapter14 Advanced I/O
14.1 Introduction 这一章介绍的内容主要有nonblocking I/O, record locking, I/O multiplexing, asynchronous I/O, th ...
- 06-Mysql数据库----表的操作
06-表的操作 本节掌握 存储引擎介绍(了解) 表的增删改查 一.存储引擎(了解) 前几节我们知道mysql中建立的库===>文件夹,库中的表====>文件 现实生活中我们用来存储数据 ...
- Oracle to MySQL Goldengate实现增量迁移
第一部分:安装和基本配置 一.环境 两台rhel 6.4虚拟机,分别异构oracle到mysql数据库同步测试Ip:192.168.0.23 部署oracle 11.2.0.4,goldgate 12 ...
- LeetCode 全解(bug free 训练)
1.Two Sum Given an array of integers, return indices of the two numbers such that they add up to a s ...