题目:

http://www.lydsy.com/JudgeOnline/problem.php?id=2226


题解:

题目要求的是Σn*i/gcd(i,n) i∈[1,n]

把n提出来变成Σi/gcd(i,n) i∈[1,n] 最后乘个n

设gcd(i,n)==d 我们枚举约数可以得到

∑(∑i/d*(gcd(i,n)==d)) (外面的Σ枚举d)

把i/d这个式子除以d可以得到

Σ( Σj*(gcd(j,n/d)==1) ) (外面Σ枚举d,j与n互质)

由于n/d与d等价

Σ( Σj*(gcd(j,d)==1) ) (外面Σ枚举d,j与n互质)

所以求小于等于i的所有与其互质的自然数之和

利用欧拉函数的性质有结论 : i*φ(i)/2

所以枚举i求解

#include<cstdio>
#define N 2000005
#define MaxN 1000000
typedef long long ll;
using namespace std;
ll phi[N],ans;
bool nonprime[N];
int prime[N],tot,T,n;
int main()
{
phi[]=;
for (int i=;i<=MaxN;i++)
{
if (!nonprime[i])
phi[i]=i-,prime[++tot]=i;
for (int j=;j<=tot;j++)
{
if ((ll)prime[j]*i>MaxN) break;
nonprime[i*prime[j]]=;
if (i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
for (int i=;i<=MaxN;i++)
phi[i]=phi[i]*i/;
scanf("%d",&T);
while (T--)
{
scanf("%d",&n);ans=;
for (int i=;i*i<=n;i++)
if (n%i==)
{
ans+=phi[i];
if (i*i<n)
ans+=phi[n/i];
}
printf("%lld\n",ans*n);
}
return ;
}

BZOJ 2226 [Spoj 5971] LCMSum | 数论拆式子的更多相关文章

  1. bzoj 2226: [Spoj 5971] LCMSum 数论

    2226: [Spoj 5971] LCMSum Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 578  Solved: 259[Submit][St ...

  2. BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论

    BZOJ 2226 [Spoj 5971] LCMSum 这道题和上一道题十分类似. \[\begin{align*} \sum_{i = 1}^{n}\operatorname{LCM}(i, n) ...

  3. BZOJ 2226: [Spoj 5971] LCMSum 莫比乌斯反演 + 严重卡常

    Code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define setIO(s) freopen(s".in" ...

  4. BZOJ 2226 [Spoj 5971] LCMSum

    题解:枚举gcd,算每个gcd对答案的贡献,贡献用到欧拉函数的一个结论 最后用nlogn预处理一下,O(1)出答案 把long long 打成int 竟然没看出来QWQ #include<ios ...

  5. BZOJ2226: [Spoj 5971] LCMSum

    题解: 考虑枚举gcd,然后问题转化为求<=n且与n互质的数的和. 这是有公式的f[i]=phi[i]*i/2 然后卡一卡时就可以过了. 代码: #include<cstdio> # ...

  6. 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)

    [BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...

  7. 【bzoj2226】[Spoj 5971] LCMSum 欧拉函数

    题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Leas ...

  8. bzoj 2226 LCMSum 欧拉函数

    2226: [Spoj 5971] LCMSum Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1123  Solved: 492[Submit][S ...

  9. 三种做法:BZOJ 2780: [Spoj]8093 Sevenk Love Oimaster

    目录 题意 思路 AC_Code1 AC_Code2 AC_Code3 参考 @(bzoj 2780: [Spoj]8093 Sevenk Love Oimaster) 题意 链接:here 有\(n ...

随机推荐

  1. ECSHOP和SHOPEX快递单号查询德邦插件V8.6专版

    发布ECSHOP说明: ECSHOP快递物流单号查询插件特色 本ECSHOP快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅 ...

  2. ruby json解析&生成

    JSON 通常用于与服务端交换数据. 在接收服务器数据时一般是字符串. 我们可以使用 JSON.parse() 方法将数据转换为 ruby 对象. 一. json字符串解析 require 'json ...

  3. (数据科学学习手札13)K-medoids聚类算法原理简介&Python与R的实现

    前几篇我们较为详细地介绍了K-means聚类法的实现方法和具体实战,这种方法虽然快速高效,是大规模数据聚类分析中首选的方法,但是它也有一些短板,比如在数据集中有脏数据时,由于其对每一个类的准则函数为平 ...

  4. 公用的cefsharp窗口

    书接上回,.net实现一个nw,一个字,简单. 结构,无废话,上图. 要说这部分上回展示过的,大致结构如此,其实要说清楚结构,还是得从工作流程开始说起 流程 1.通过桌面的快捷方式启动WebOnDes ...

  5. 初步学习pg_control文件之十四

    接前文 初步学习pg_control文件之十三 看如下几个: /* * Parameter settings that determine if the WAL can be used for arc ...

  6. 人工智能,图片识别,与GUI编程

    GUI编程: https://sourceforge.net/projects/pyqt/ 百度aip图片识别 https://pypi.python.org/pypi/baidu-aip

  7. hibernate 各历史版本下载 spring各历史版本下载

    hibernate 各历史版本下载http://sourceforge.net/projects/hibernate/files/ spring各历史版本下载http://www.springsour ...

  8. c++ combination by next_permutation

    #include <iostream> #include <algorithm> #include <vector> int main() { int n, r; ...

  9. MySQL高可用之PXC安装部署

      Preface       Today,I'm gonna implement a PXC,Let's see the procedure.   Framework   Hostname IP P ...

  10. 「日常训练」 Finite or not? (CFR483D2C)

    题意(Codeforces 984C) 给定p,q,b" role="presentation">p,q,bp,q,b,问pq" role="p ...